HY-LV123SU Series

High Voltage Ripple Test Power Supply for New Energy Vehicles Hangyu Power System (Shanghai) Co., Ltd. C&DC Power Source

HY-LV123SU Series High Voltage Ripple Test Power Supply for New Energy Vehicles

Product Features

- Applicable standards: LV123、VW80303、VW80300、ISO21498-2
- Output voltage: 0-1500V
- Output current:0-1000A
- DC output power, single machine maximum 500kW
 (Can achieve higher power through parallel operation)
- Support multiple power supplies for parallel operation
- The maximum ripple frequency can reach 10Hz~150kHz

High voltage systems are becoming increasingly widespread in the application of new energy vehicles, including hybrid, plug-in hybrid, pure electric, etc. The safety of high-voltage components operating on high voltage systems has received considerable attention and importance. Therefore, the testing regulation LV123 was born, defining the standard requirements and testing methods for the electrical performance characteristics and safety testing of high-voltage components.

HY-LV123SU series new energy vehicle testing high-voltage ripple power supply, suitable for LV123, VW80303, VW80300, ISO21498-2 and other new energy vehicle testing standards, convenient operation, efficient assistance in high-voltage component ripple superposition testing, ensuring long-term stable operation of the high-voltage system.

Application Area

- HV battery system
- Inverter
- DC/DC converter HV
- On-board charger
- Electrical air conditioning compressor
- Electrical transmission oil pump

Electrical Characteristic Testing Project

1、VW80300、VW80303、LV123 Test Content

	Electrical HV test			
	EHV-01 Performance test within the regular HV operating voltage range			
	EHV-02 Operation within the HV overvoltage range			
	EHV-03 Operation within the HV undervoltage range			
EHV-05 Generated HV voltage dynamics				
	EHV-06 System HV voltage dynamics			
	EHV-08 Generated HV voltage ripple			
	EHV-09 System HV voltage ripple			
	EHV-11 HV voltage offset			
	EHV-12 HV overcurrent EHV-13 HV service life (addenda)			
	EHV-14 On/off durability testing for HV components			
	EHV-15 Functionality of HV interlock, maintenance connector, and crash signaling			
	Env-10 runctionality of the interfock, maintenance connector, and clash signaling			

VW 80300 Cycle description with frequency distribution

Product Selection Notice					
Product Output Output Output series voltage current broadband	Standard Communication Interface				
HY-LV123SU 300 500 100k	- RS-485				
Selection Example:	- RS-232				
Product model:HY-LV123SU 300-500-100k output voltage 0-300V, Output current 0-500A, Purchase frequency为100kHz	- Digital I/O				

*All technical indicators can only be guaranteed when the equipment runs continuously for more than 30 minutes at the specified operating temperature.

HY-LV123SU Product selection and parameters

This series of products can choose a wide bandwidth power output: 10Hz-150kHz

If there is no model in the selection table that meets your needs, you can propose it separately for special customization.

Output power 2.3kw series			
Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-8.4	300V	8.4A	2.5kW
HY-LV123SU 400-6.3	400V	6.3A	2.5kW
HY-LV123SU 500-5	500V	5A	2.5kW
HY-LV123SU 600-4.2	600V	4.2A	2.5kW

Product model	Output voltage	Output current	Output broadband		
HY-LV123SU 750-3.4	750V	3.4A	2.5kW		
HY-LV123SU 800-3.2	800V	3.2A	2.5kW		
HY-LV123SU 1000-2.5	1000V	2.5A	2.5kW		
HY-LV123SU 1500-1.7	1500V	1.7A	2.5kW		

Output power 5kW series power supply selection				
Product model	Output voltage	Output current	Output broadband	
HY-LV123SU 300-16.7	300V	16.7A	5kW	
HY-LV12SU3 400-12.5	400V	12.5A	5kW	
HY-LV123SU 500-10	500V	10A	5kW	
HY-LV123SU 600-8.4	600V	8.4A	5kW	
HY-LV123SU 750-6.7	750V	6.7A	5kW	
HY-LV123SU 800-6.3	800V	6.3A	5kW	
HY-LV123SU 1000-5	1000V	5A	5kW	
HY-LV123SU 1500-3.4	1500V	3.4A	5kW	

Output power 10kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-33.4	300V	33.4A	10kW
HY-LV123SU 400-25	400V	25A	10kW
HY-LV123SU 500-20	500V	20A	10kW
HY-LV123SU 600-16.7	600V	16.7A	10kW
HY-LV123SU 750-13.4	750V	13.4A	10kW
HY-LV123SU 800-12.5	800V	12.5A	10kW
HY-LV123SU 1000-10	1000V	10A	10kW
HY-LV123SU 1500-6.7	1500V	6.7A	10kW

HY-LV123SU Product Selection And Purchase

Output power 20kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-67	300V	67A	20kW
HY-LV123SU 400-50	400V	50A	20kW
HY-LV123SU 500-40	500V	40A	20kW
HY-LV123SU 600-34	600V	34A	20kW
HY-LV123SU 750-27	750V	27A	20kW
HY-LV123SU 800-25	800V	25A	20kW
HY-LV123SU 1000-20	1000V	20A	20kW
HY-LV123SU 1500-13.5	1500V	13.5A	20kW

Output power 40kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-134	300V	134A	40kW
HY-LV123SU 400-100	400V	100A	40kW
HY-LV123SU 500-80	500V	80A	40kW
HY-LV123SU 600-67	600V	67A	40kW
HY-LV123SU 750-54	750V	54A	40kW
HY-LV123SU 800-50	800V	50A	40kW
HY-LV123SU 1000-40	1000V	40A	40kW
HY-LV123SU 1500-27	1500V	27A	40kW

Output power 60kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-200	300V	200A	60kW
HY-LV123SU 400-150	400V	150A	60kW
HY-LV123SU 500-120	500V	120A	60kW
HY-LV123SU 600-100	600V	100A	60kW
HY-LV123SU 750-80	750V	80A	60kW
HY-LV123SU 800-75	800V	75A	60kW
HY-LV123SU 1000-60	1000V	60A	60kW
HY-LV123SU 1500-40	1500V	40A	60kW

Output power 100kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-334	300V	334A	100kW
HY-LV123SU 400-250	400V	250A	100kW
HY-LV123SU 500-200	500V	200A	100kW
HY-LV123SU 600-167	600V	167A	100kW
HY-LV123SU 750-134	750V	134A	100kW
HY-LV123SU 800-125	800V	125A	100kW
HY-LV123SU 1000-100	1000V	100A	100kW
HY-LV123SU 1500-67	1500V	67A	100kW

Output power 30kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-100	300V	100A	30kW
HY-LV123SU 400-75	400V	75A	30kW
HY-LV123SU 500-60	500V	60A	30kW
HY-LV123SU 600-50	600V	50A	30kW
HY-LV123SU 750-40	750V	40A	30kW
HY-LV123SU 800-38	800V	38A	30kW
HY-LV123SU 1000-30	1000V	30A	30kW
HY-LV123SU 1500-20	1500V	20A	30kW

Output power 50kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-167	300V	167A	50kW
HY-LV123SU 400-125	400V	125A	50kW
HY-LV123SU 500-100	500V	100A	50kW
HY-LV123SU 600-84	600V	84A	50kW
HY-LV123SU 750-67	750V	67A	50kW
HY-LV123SU 800-63	800V	63A	50kW
HY-LV123SU 1000-50	1000V	50A	50kW
HY-LV123SU 1500-33.5	1500V	33.5A	50kW

Output power 75kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-250	300V	250A	75kW
HY-LV123SU 400-188	400V	188A	75kW
HY-LV123SU 500-150	500V	150A	75kW
HY-LV123SU 600-125	600V	125A	75kW
HY-LV123SU 750-100	750V	100A	75kW
HY-LV123SU 800-94	800V	94A	75kW
HY-LV123SU 1000-75	1000V	75A	75kW
HY-LV123SU 1500-50	1500V	50A	75kW

Output power 150kW series power supply selection

Product model	Output voltage	Output current	Output broadband
HY-LV123SU 300-500	300V	500A	150kW
HY-LV123SU 400-375	400V	375A	150kW
HY-LV123SU 500-300	500V	300A	150kW
HY-LV123SU 600-250	600V	250A	150kW
HY-LV123SU 750-200	750V	200A	150kW
HY-LV123SU 800-188	800V	188A	150kW
HY-LV123SU 1000-150	1000V	150A	150kW
HY-LV123SU 1500-100	1500V	100A	150kW

1.1、EHV-01 Performance test within the regular HV operating voltage range

Purpose: Within the regular HV operating voltage range, functional state A and the maximum specified power must be verified under various operating parameters.

Test: It includes two sub-tests:

– EHV-01a for components that do not require any voltage-dependent derating in the regular op erating voltage range as per the Component Performance Specification;

-EHV-01b for components that perform voltage-dependent derating in the regular operatingvoltage range as per the Component Performance Specification.

HV voltage curve within the regular HV operating voltage range

Test parameters for EHV-01a Operation within the regular HV operating voltage range		
DUT operating mode	Operationmax	
LV voltages	Vop	
Internal resistance of HV source	$R_{i,HV} = 0m\Omega$	
thi	As per Component Performance Specification, but at least 5 min	
tfi	As per Component Performance Specification, but at least 5 min	
th2	As per Component Performance Specification, but at least 5 min	
tr ₂	As per Component Performance Specification, but at least 5 min	
thз	As per Component Performance Specification, but at least 5 min	
th4	As per Component Performance Specification, but at least 5 min	
trı	As per Component Performance Specification, but at least 5 min	
ths	As per Component Performance Specification, but at least 5 min	
tr2	As per Component Performance Specification, but at least 5 min	
th6	As per Component Performance Specification, but at least 5 min	
Temperatures	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'	
Number of cycles	1 per temperature	
Number of DUTs	6	
Test case 1		
HV components	Voltage curve as per figure 10	
Test case 2		
HV energy storage devices (closed contactors)	The power specified in the Component Performance Specification must be generated by a corresponding charging and dis⊠charge current. Times as per Component Performance Specification	

HV voltage curve in the regular HV operating voltage range with voltage dependent derating

Test parameters for EHV-01b Operation within the regular HVoperating voltage range		
DUT operating mode	Operationmax	
LV voltages	Vop	
Internal resistance of high voltage power supply	$R_{i,HV} = 0m\Omega$	
tedr1	As per Component Performance Specification, but at least 5 min	
th1	As per Component Performance Specification, but at least 5 min	
tfl	As per Component Performance Specification, but at least 5 min	
th2	As per Component Performance Specification, but at least 5 min	
tf2	As per Component Performance Specification, but at least 5 min	
th3	As per Component Performance Specification, but at least 5 min	
tder2	As per Component Performance Specification, but at least 5 min	
th4	As per Component Performance Specification, but at least 5 min	
trı	As per Component Performance Specification, but at least 5 min	
th5	As per Component Performance Specification, but at least 5 min	
tr2	As per Component Performance Specification, but at least 5 min	
th6	As per Component Performance Specification, but at least 5 min	
Temperatures	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'	
Number of cycles	1 per temperature	
Number of DUTs	6	

EHV-01b Test parameters v	vithin the lower a	and upper d	erating ranges

DUT operating mode	Operationmax	
Vop,unlim,max,HV	Upper voltage threshold at which the component operates without voltage-independent derating	
Vop,unlim,min,HV	Upper voltage threshold at which the component operates without voltage-independent derating	
tedr1, tedr2	As per Component Performance Specification, but at least 5 min	
thi	60 s, variable up to 80 s, if necessary (dependent on t_{der1} or $t_{der2})$	
trı	5s	
th2	5s	
trı	5s	
Derating cycle of upper derat ing range	$t_{r1} + t_{h2} + t_{f1} + t_{h2} = 20 \text{ s}$	
Derating cycle of lower derating range	$t_{f1} + t_{h2} + t_{r1} + t_{h2} = 20 \text{ s}$	

1.2、EHV-02 Operation within the HV overvoltage range

Purpose: Within the HV overvoltage range, the specified functional state and the specified power must be verified under various operating parameters. After the voltage returns to the regular HV operating voltage range, functional state A and the maximum specified power must be fulfilled again.

HV voltage curve in HV overvoltage range

Actual measurement chart

Test parameters for EHV-02 Operation within the HV overvoltage range

DUT operating mode	Operationmin and Operationmax
LV voltages	Vop
Internal resistance of HV source	R _{i,Hv} =0mΩ
Vovl	Below the overvoltage detection threshold
Vov2	Above the overvoltage detection threshold and below the switchoff threshold
thi	Hold time until having reached a constant temperature throughout, but at least 5 min
trı	1min
th2	1min
tr2	1min
ths	1min
trı	1min
th4	1min
trз	1min
ths	1min
tr2	1min
the	1min
tr4	1min
th7	1min
trs	1min
ths	1min
Temperatures	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'
Number of cycles	3
Number of DUTs	6

1.3、EHV-03 Operation within the HV undervoltage range

Purpose: Within the HV undervoltage range, the specified functional state and the specified power must be verified under various operating parameters.

Rol 1.40 s/chv 78 ± -500

Test parameters for EHV-03 Operation within the HV undervoltage range

status 158 Vide P1:pkpk/C1| P2:freq/C1| 752 V 30.76821021 mHz

DUT operating mode	Operationmin and Operationmax
LV voltages	V _{op}
Internal resistance of HV source	$R_{i,HV} = 0m\Omega$
Vm	Vm = Vopmin,HV - (Vopmin,HV - Vmin,HV) / 2
thi	Hold time until having reached a constant temperature throughout, but at least 5 min
tf1	1min
th2	1min
tr2	1min
th3	1min
trı	1min
th4	1min
tra	1min
ths	1min
tr2	1min
the	1min
tf4	1min
th7	1min
trз	1min
ths	1min
Temperatures	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'
Number of cycles	3
Number of DUTs	6

1.4、EHV-05 Generated HV voltage dynamics

Purpose: The purpose of the test is to verify that the HV voltage dynamics (rate of change) generated by the component fall within the specified limits and that the HV functional state does not change during the power jumps that are part of the test.

TELEDYNE LECH

Actual measurement chart

Test parameters for EHV-05 Generated HV voltage dynamics

DUT operating mode	Operationmin and Operationmax
HV voltages	Vopmins VN.HVS Vopmax.HV
LV voltages	Vop
Internal resistance of HV source	Ri.Hv as per table 1
Control signal	SP.HV=0% - operating mode Operationmin SP.HV=100% - operating mode Operationmax
Hold time	th≥5s but at least as long as required for the DUT's power and functionality to reach a steady state and for all measured values to be recorded
Limit for HV voltage rate of change	450-VDC vehicle electrical system: $(\Delta VHV/\Delta t) \ge 15 V/ms$ 900-VDC vehicle electrical system: $(\Delta VHV/\Delta t) \ge 30 V/ms$ or as per Component Performance Specification
Temperatures	Tmax与Tcool,max',TRT与Tcool,Tmix与Tcool,mix'
Number of cycles	3
Number of DUTs	6

Internal resistance as a function of temperature	
Tmin	Ri,HV = 200 mΩ
Trt	$R_{i,HV} = 100 \text{ m}\Omega$
Tmax	$R_{i,HV} = 50 m\Omega$

1.5、EHV-06 System HV voltage dynamics

Purpose: The robustness of HV components when subjected to the maximum HV voltage dynamics in the HV system (HV voltage rate of change) must be verified.

Figure 25 – System HV voltage dynamics – Example

Actual measurement chart

Test parameters for EHV-06 System HV voltage dynamics		
DUT operating mode	Operationmax	
HV voltages	As per figure 25	
LV voltages	Vop	
Internal resistance of HV source	R _{i,HV} = 0mΩ	
Hold time	th≥5s but at least as long as required for the DUT's power and functionality to reach a steady state and for all measured values to be recorded	
HV voltage rate of change	450-VDC vehicle electrical system: $(\Delta VHV/\Delta t) \ge 20 V/ms$ 900-VDC vehicle electrical system: $(\Delta VHV/\Delta t) \ge 40 V/ms$ or as per Component Performance Specification	
Temperatures	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'	
Number of cycles	3	
Number of DUTs	6	

1.6 EHV-08 Generated HV voltage ripple

450-VDC vehicle electrical system

900-VDC vehicle electrical system

Purpose: ■ The purpose of this test is to verify that the generated HV voltage ripple of an HV component falls within the specified limits and that its HV functional state will not change as a result of this selfgenerated HV ripple. Test: ■ The ripple contents superimposed on the DC HV supply voltage and the DC HV supply current must be tested. Test setup type 2 in section 4.9.2 must be used.

■ All measurement signals must be fed to a spectrum analyzer, data logger, or oscilloscope with afast Fourier transform (FFT) function and must be evaluated.

■ In order to take different circuit topologies and power classes into account, this test must be evaluated in the time domain and in the frequency domain. The component must meet all of the require⊠ments individually.

■ Before the test, the worst-case scenario out of the possible operating and load scenarios must be determined for each HV operating voltage. The test must then be carried out using this scenario.

The contractor must agree upon the worst-case scenario test with the purchaser and add it to the test plan.

Worst-case scenarios include, for example:

- Voltage ripple caused by hunting oscillation at low load, e.g., at 5% to 10% of the rated load

- Voltage ripple when fast control algorithms are activated, e.g., in order to damp jerking caused by mechanical vibrations in the powertrain

- Voltage ripple at maximum acceleration from stop or from a low speed

- Low-temperature operation of a duty cycle/PWM-controlled heater

The test must be carried out at the following HV component power levels:

- The worst-case scenario determined previously

- Idling with powertrains at 5% to 10% of the rated speed
- 25%
- 50%
- 75%
- 100%

■ For each measurement run, a spectral amplitude distribution of the HV voltage and current ripples must be generated in the form of a diagram. In this diagram, the maximum amplitude and at least the following 10 maxima, with the corresponding frequency and amplitude, must be marked as characteristic frequencies. These characteristic frequencies must be listed in a table that also specifies all relevant parameters.

■ If operation without an HV energy storage device is intended for the DUT, the entire test must addi⊠tionally be run for this operating case, with the parameters adjusted accordingly.

Figure 28 – Example of the measured voltage (VHV) in the frequency domain

f

Table 31 – Test parameters for EHV-08 Generated HV voltage ripple			
DUT operating mode	Operationmin and Operationmax		
HV voltages	Vopmin, HV, VN.HV, Vopmax.HV		
LV voltages	Vop		
Internal resistance of HV source	R _{i.Hv} = 100mΩ		
Measuring frequency range f	10Hz~150kHz		
Maximum voltage ripple up to and including the constant power output specified in the Component Performance Specification in the time domain, unless otherwise specified in the Component Performance Specification	450-VDC vehicle electrical system:16V _{pp} 900-VDC vehicle electrical system:16V _{pp}		
Short-term, maximum voltage ripple in the time domain above the constant power output (static and dynamic), unless otherwise specified in the Compon- ent Performance Specification. The permissible duration must be derived from the peak load scenarios.	450-VDC vehicle electrical system: 32Vpp 900-VDC vehicle electrical system: 32Vpp		
In the frequency domain, unless otherwise specified in the Component Performance Specification	450-VDC vehicle electrical system	10Hz~2kHz10Vpp2kHz~5kHz10Vpp~19Vpp(frequency log scale)5kHz~40kHz19Vpp40kHz~50kHz19Vpp~6Vpp(frequency log scale)>50kHz6Vpp	
	900-VDC vehicle electrical system	10Hz~2kHz12Vpp2kHz~5kHz12Vpp~19Vpp(frequency log scale)5kHz~40kHz19Vpp40kHz~50kHz19Vpp~6Vpp(frequency log scale)>50kHz6Vpp	
Maximum voltage ripple without HV energy storage device	The test must be carried out in generator mode with CS = 700 μF with the same maximum voltage ripple values.		
Temperatures	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'		
Number of cycles	3		
Number of DUTs	3		

V

1.7、EHV-09 System HV voltage ripple

Purpose: ■The robustness of HV components when subjected to the HV voltage ripple produced in the HV system must be verified.

NOTE 4: The test results flow into the System Performance Specification as feedback.

Test An alternating voltage with a variable amplitude and frequency is superimposed on the DUT's DC HV supply voltage.

Test setup type 2 in section 4.9.2 must be used and expanded as per the diagram in figure 29.

An oscilloscope must be used to monitor the injected alternating voltage. The test parameters are specified in table 32. If the DUT is powered from the HV vehicle electrical system via a DC-DC converter, the curve for the system ripple must be agreed upon between the purchaser and the contractor on a project specific basis.

Test case 1

In test case 1, the amplitude of the ripple voltage on the DUT must be set to the values specified in table 32 and readjusted, if necessary.

During the test, it is necessary to look out for resonance phenomena between the test setup and the DUT. All peaks and sags in the ripple content of the HV voltage and HV current in the DUT must be documented together with the corresponding frequency.

Test case 2

■ In test case 2, the amplitude of the ripple voltage on the DUT must be set to the value specified in table 32 at 1 kHz. After this, the required frequency range must be run through without any change to the injected amplitude. During this process, the amplifier is only used to correct the amplitude frequency response of the transformer used for coupling purposes.

During the test, it is necessary to look out for resonance phenomena between the test setup and the DUT. All peaks and sags in the ripple content of the HV voltage in the DUT must be documen at together with the corresponding frequency. NOTE 5: If test case 1 showed that there is a resonance point at 1 kHz, the amplitude must be set at a frequency between 500 Hz and 1 kHz at which there is no resonance point.

DPV : Differential probe for HV voltage measurement

ADC : Oscilloscope

TR : Transformer with wide bandwidth and high DC current-carrying capacity

HY-BPSU : High speed power supply for automotive electronic testing

Table 32 – Test parameters for EHV-09 System HV voltage ripple				
DUT operating mode		Operationmin and Operationmax		
HV voltages	Test case 1	Vopmin, VN.HV , Vopmax.HV		
The voltages	Test case 2	VN .HV		
LV voltages		Vop		
Internal resistance of HV source		Ri.Hv=100mΩ		
Power limiting		AC current limiting:The applied current must be limited to a maximum of 100 A, unless otherwise defined in the Component Performance Specification.		
Voltage waveform		Sinusoidal		
Increment		10Hz (80Hz~1kHz) 100Hz (1kHz~10kHz) 1kHz (10kHz~150kHz)		
Test duration per frequency increment		> 2s- but at least as long as required for all measured values to be recorded		
Test case 1 Voltage ripple	450-VDC vehicle electrical system	80Hz~1kHz12Vpp1kHz~5kHz12Vpp~24Vpp(frequency log scale)5kHz~40kHz24Vpp40kHz~50kHz24Vpp~8Vpp(frequency log scale)>50kHz8Vpp		
	900-VDC vehicle electrical system	80Hz~1kHz15Vpp1kHz~5kHz15Vpp~32Vpp(frequency log scale)5kHz~40kHz32Vpp40kHz~50kHz32Vpp~15Vpp(frequency log scale)>50kHz15Vpp		
Test case 1 Resonance test		Voltage ripple amplitude :4 Vpp at 1 kHz Frequency range :80 Hz to 150 kHz		
	Test case 1	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'		
Temperatures	Test case 2	TRT 与 Tcool		
Number of cycles		3		
Number of	Test case 1	3		
DUTs	Test case 2	1		

Rol 1.40 arch 校正 0.90 V 16 MS 250 KS/S 世俗 正

450-VDC vehicle electrical system

900-VDC vehicle electrical system

1.8、EHV-11 HV voltage offset

Figure 33 – HV voltage curve for test step 2 of the HV voltage offset test

Table 35 – Test parameters for EHV-11 HV voltage offset				
DUT operating mode	Operationmax			
HV voltages	Vopmin,HV, VN,HV, 和 Vopmax,HV			
LV voltages	Vop			
Temperatures	Tmax与Tcool,max',TRT与Tcool,Tmix与Tcool,mix'			
Resistors	Unless otherwise defined in the Component Performance Specification, the following applies:Total resistance (Rpos+Rneg) $\!\leqslant\!100~\mathrm{k}\Omega$			
Number of cycles	3			
Number of DUTs	3			
Test step 1				
Hold time	Th = 120 s			
过渡期	$T_1=60\mbox{ s}$, $T_2\leqslant 20\mbox{ s}$			
Test step 2				
Hold time	Th = 120 s			
Period duration	T = 100 ms , 20 ms, 10 ms			
Rise time	Tr = 1 ms 1/4 T			
Fall time	Tf = 1 ms 1/4 T			
Cycle duration	5 min per period duration			

Hangyu Power Supply | 14

1.9、EHV-12 HV overcurrent

Purpose: The robust behavior of the HV overcurrent protection must be verified. The overcurrent strength of electromagnetic switches, contacts, electronic outputs, and supply connections in backfeed-capable HV components must be tested. Higher currents than in the normal load case (e.g., maximum stalling current of a motor) must also be considered.

Figure 34 – HV current curve for the overcurrent test for HV energy storage devices

Table 56 – Test parameters for Env-12 nv overcuitent				
DUT operating mode	Operationmax			
HV voltages	Vopmax,HV			
LV voltages	Vop			
Maximum load current	ltest,HV = 3 × lopmax,HV			
T1	20 s			
Thi	10 s			
Th2	15 min			
Temperatures	Tmax 与 Tcool,max			
Number of cycles	2			
Number of DUTs	3			

Table 36 – Test parameters for EHV-12 HV overcurrent

In a second test step, the DUT must be switched "on", "off", and then back "on" once at Itest, HV under load.

1.10 EHV-13 HV service life (additional)

Purpose: As a result of existing HV voltage ripples and HV voltage dynamics, HV components are subject to a load that has an influence on the required service life. This test uses accelerated loading on the components that represents the load during the entire vehicle service life.

Test: In addition to test L-02 "High-temperature durability service life test" in VW 80000, the following applies: Test setup type 2 in section 4.9.2 must be used and expanded as per diagram figure 29.

1 cycle = computed total test time / 50

The test must be carried out as per the parameters in table 37.

In each cycle, the HV voltage ripple to which the DUT must be subjected must be set as per table 38. For each HV voltage ripple, the frequencies must be distributed evenly as per figure 35.

Table 37 – Test parameters for EHV-13 HV service life (additional)

DUT operating mode	Operationmax	
Vs.Hv HV voltages	$V_{N,HV}$ + $V_{VPP,HV}$	
HV voltages	Vop	
Internal resistance of HV source	100mΩ	
Voltage waveform	Sinusoidal	
Number of cycles	50次	

Proportion	450-VDC	900-VDC	Frequencies
85%	3V _{pp}	5V _{pp}	200Hz/5kHz/10kHz/20kHz/40kHz
12%	6V _{pp}	$9V_{pp}$	200Hz/5kHz/10kHz/20kHz/40kHz
2%	$8V_{pp}$	12V _{pp}	5kHz/10kHz/20kHz/40kHz
1%	9V _{pp}	14V _{pp}	5kHz/10kHz/20kHz

Figure 35 – Cycle description with frequency distribution

- A 450-V DC vehicle electrical system
- B 900-VDC vehicle electrical system
- C 1/50 (-10 min) of total test duration (Arrhenius model)
- D 1 cycle

Implementation testing schematic diagram

VW 80000, L-02 "High temperature durability service life test" actual waveform measurement.

1.11、EHV-14 On/off durability testing for HV components

Purpose: The purpose of this test is to verify the reliable initialization, startup, and shutdown of the component at all voltage levels.

As a result of pre-charging, HV components are subject to a load that has an influence on the required service life.

Test: This test must be performed as described in VW 80000.

It deviates from VW 80000 as follows: The voltages V_{opmin,HV}, V_{N,HV}, and V_{opmax,HV} must be distributed in equal parts to the cycles of the test as defined in VW 80000.

1.12、EHV-15 Functionality of HV interlock, maintenance connector, and crash signaling

Purpose: The functionality of the HV-specific LV signals and LV signal chains must be tested as part of the electrical tests in VW80000.

Table 39 – Additional parameters for LV signal loops			
DUT operating mode	Operation _{max} at LV level		
HV voltages	Vn,hv		
LV voltages	Vop		
Minimum loop resistance	As per Component Performance Specification		
Maximum loop resistance	As per Component Performance Specification		
Maximum loop capacity to GND	As per Component Performance Specification		
Switching thresholds	As per Component Performance Specification		
Discontinuity time	≥2s		
Short circuit time	≥2s		
Response times	As per Component Performance Specification		
Permissible measurement tolerances	As per Component Performance Specification		
Temperatures	Tmax与Tcool,max',TRT与Tcool, Tmix与Tcool,mix'		
Number of cycles	3		
Number of DUTs	6		

Test: The correct functionality and signal integrity of signal generators for an interlock loop (HV interlock) and for the maintenance connector must be verified during all the electrical tests in VW 80000.

The correct functionality and signal integrity of evaluation circuits for signals of an interlock loop (HV interlock), for the maintenance connector, and for crash signaling must be verified during all the electrical tests in VW 80000.

The correct response of HV components to correctly present or transmitted signals of an interlock loop (HV interlock), for the mai-ntenance connector, and for crash signaling must be verified during all the electrical tests in VW 80000.

LV signal loops relevant to the HV system's functionality and safety must additionally be tested with the following tests a nd param-eters (see also table 39):

- Opening the external loop

- Opening internal DUT contacts or switches

- Excessively low impedance or short circuit in the loop

- Capacitive loading of loop with once and twice the permissible capacitive load as per the Comonent Performance Specification

- Opening the signal loop with the specified capacitive loads, on each side of the loop at the inserted capacitor at a time.

- Loop short circuit to GND
- Loop short circuit to positive terminal of all LV supplies
- Opening the loop and short circuit of a signal cable to GND, with both signal cables being connected to GND in succession

- Opening the loop and short circuit of a signal cable to the positive terminal of all LV supplies, with both signal cables being connect-

ed to the positive terminal in succession

- Influences due to shunting

A signal detector in an HV component must show the specified behavior at external signal cables and internal contacts or switches during the following tests:

- Opening the external loop
- Opening internal DUT interlock contacts or switches
- Excessively low impedance or short circuit in the loop
- Loop short circuit to GND
- Loop short circuit to +12 V

- Capacitive loading of loop with once and twice the permissible capacitive load as per the Component Performance Specification

- Opening the signal loop with the specified capacitive loads, on each side of the loop at the inserted capacitor at a time

- Opening the loop and short circuit of a signal cable to GND, with both signal cables being connected to GND in succession

- Opening the loop and short circuit of a signal cable to the positive terminal of all LV supplies, with both signal cables being connected to the positive terminal in succession

- Briefly opening the loop for a duration that ensures that the opening is unambiguously detected as a discontinuity

(e.g., for a detection threshold of 5 ms \pm 10%, the brief opening must last \geq 6 ms and \leq 9 ms)

- Influences due to shunting

The DUT's response to the influence of signal loops or signals must be monitored and documented in the test report. The time between the moment the loop exerts its influence and the DUT's response must be recorded.

HY-LV123SU Series Model And Size

Appearance and Display

1 、 Control Panel Description

- 1 . Power input circuit breaker;
- ②、7-inch LCD display window display:

voltage and current setting values, voltage and current

measurement values function settings menu;

(3)、Function buttons:

- Used for required numerical input and parameter settings;
- (4)、 Voltage/current setting key
- (5)、Function reuse key
- 6、Status indicator light
- O 、Chassis handle

 \otimes Multi stage shuttle adjustment knob, the inner circle adjusts one word at a time, and the outer circle is divided into \pm 8 adjustable segments;

- (9)、Lock、Enter、Esc、Local、Reset/Alarm、Output ON/OFF
- 19 inch standard rack mounting holes

2、 Display screen description

- ①、Voltage measurement value display;
- ②、Current measurement value display;
- ③、Frequency setting value display;
- ④、Voltage setting value display;
- ⑤、Current time display;
- (6)、 Accumulated working time display;
- ⑦、Current working hours;
- Set menu button for setting system parameters;
- (9)、 Programming button, used to set parameters during programming;

(1) When editing the voltage and current values, quickly increase them. For example, when the voltage is 2V, pressing "+" can increase it to3、4、5.....;

 \textcircled{m}_{\times} When editing voltage and current values, quickly reduce them. For example, when the voltage is 10V,

press "-" to decrease it to9、 8、7.....;

⁽¹⁾. When modifying the set value, you can click the arrow keys to select the number that needs to be modified.

10U 440(W)*600(D)*445(H)mm

HY-LV123SU Series Model And Size

18U 600(W)*800(D)*920(H)mm

Customer Cases (Partial)

Official WeChat: hypower-cn

Contact us

Hangyu Power System (Shanghai) Co., Ltd

Mobile/Whatsapp: +8613801800699 Fax: +86-21-67285228-8009 Email:sales@hangyupower.com neo@hangyupower.com Address: Block B, Building 11, No. 1698 Minyi Road, Songjiang District, Shanghai Web:www.hangyupower.com

[®]Hangyu Power System, 2024

Hangyu Power Automotive Electronic Testing Solution Manual, Version 05.00, February 2024 All technical data and instructions are based on the actual product If there are any changes, Hangyu Power has the final interpretation right

Authorized dealer: