



HY-CTSU1000 Economical Fluxgate Current Sensor

HY-CTSU Series Economical Fluxgate Current Sensor

After years of technological precipitation, Hangyu Power has always been committed to the import replacement of high-end high-precision sensors, continuously improve sensor quality in terms of measurement accuracy, temperature characteristics, response time, stability, reliability, etc.Launched HY-CTSU series economical fluxgate current sensor, multipoint zero flux technology system applied to Hangyu high precision DC sensor, the excitation flux closed-loop control technology, self-excited flux gate technology and multi-closed-loop control technology are combined, zero-flux closedloop control of excitation flux, DC flux and AC flux is realized, and high-frequency ripple detection is realized by constructing high-frequency ripple induction channel. Thus, the sensor has relatively high gain and measurement accuracy in the full bandwidth range.

Core Technology

- Excitation flux closed-loop control technology
- Self-excitation demagnetization technology
- Multi-point zero flux technology
- Multi-range automatic switching technology
- Temperature control compensation technology

Performance Characteristics

- Input and output current isolation measurement
- Excellent linearity and accuracy
- Very low temperature drift
- Extremely low zero drift
- Strong resistance to electromagnetic interference
- Wide band and low response time

Application Field

- Medical equipment: scanner, MRI
- Rail transportation: high-speed train, subway, tram, trolley bus Power: converter, inverter
- Aerospace: Satellites, rockets
- Instrumentation: Power analyzer, high precision power supply Cars: Electric cars
- Smart grid: power generation, battery monitoring, medium and New energy: photovoltaic, wind energy low voltage substation
- Ships: Electric powered ships
- Measurement: verification and calibration
- Industrial control: industrial motor drive, UPS, welding, robot, crane, elevator, ski lift

Electrical Performance

Item	Symbo	ol Test condition	Minimum value	Nominal	Maximum value	Unit
Input terminal rated DC current	IPN_DC	-	-	±1000	-	Adc
Input terminal rated AC current*	IPN	_	-	700	_	Aac
Overload current at the input	Ірм	1 minute	-	_	±1200	Adc
Operating voltage	Vc	_	±18	_	±24	V
Power consumption current	Ipwr	Input terminal rated working current	±30	±230	250	mA
Current variable ratio	Kn	Input: Output	_	5000:1	_	_
Rated output current	Isn	Input terminal rated working current	-	±0.2	-	А
		VC:±18V; IPN_DC:±100	00A 0	_	15	
Measuring resistance	Rм	VC:±18V; IPN_DC:±120	0 A00	_	5	0
medading resistance	IXIVI	VC:±24V; IPN_DC:±100	0 AO	_	35	7.2
		VC:±24V; IPN_DC:±120	00A 0	_	25	

^{*} Refers to AC valid value

Measurement Of Accuracy

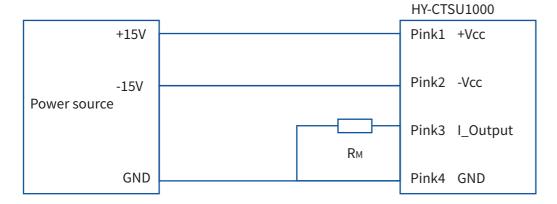
ltem	Symbol	Test condition	Minimum value	Nominal	Maximum value	Unit
Accuracy	XG	Lnput DC, full temperature ran	ge —	_	500	ppm
Linearity	٤٤	Full range	-	_	50	ppm
Temperature stability	Tc	-	-	_	25	ppm
Zero offset current	Іот	@25°C	_	_	±5	μΑ
Zero offset current	Іот	Full temperature range	-	-	±10	μΑ
Reaction time	tr	di/dt=100V/μs,rising to 90%lp	N —	1	_	μs
Rate of current change	di/dt	-	100	_	-	A/μs
Band width (-3dB)	F	_	0	_	100	kHz

Safety Feature

Item	Symbol	Test condition	Numerical value	Unit
Isolation voltage / Between input and output	Vd	50Hz,1min	5	kV
Transient isolation withstand voltage/ Between input and output	Vw	50μs	10	kV
Creepage distance / Between the input and the shell	dCp	-	11	mm
Electrical clearance distance / Between the input and the shell	dCi	_	11	mm
Comparative tracking index (CTI)	СТІ	IEC-60112	275	V

General Characteristic

ltem	Symbol	Test condition	Minimum value	Nominal	Maximum value	Unit
Operating temperature range	е Та	-	-40	_	+80	°C
Storage temperature range	Ts	-	-55	_	+95	°C
Relative humidity	RH	_	20	_	80	%
Quality	М	_		520±30		g

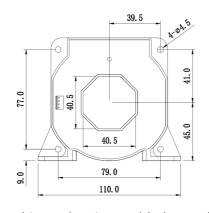

Running Status Description

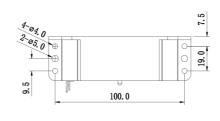
In the case of normal power supply, when the bus current passing through the current sensor is below the rated operating current of the sensor, the input current passing through the sensor is proportional to the output current of the sensor. If the input current exceeds the working range of the sensor, the sensor enters the overload working mode, and its output current is no longer proportional to the input current signal. When the input current of the sensor is restored to the rated working current range of the sensor, the output current of the sensor and the input current return to the normal proportional relationship.

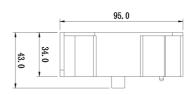
Application Connection And Description

■ Phoenix terminal pin function definition

Pin Number	Definition	Instructions
1	V+	+15v to +24V
2	V-	-15V to -24V
3	OUT	I_Output
4	GND	GND




Test instructions:


By measuring the test current Is flowing through the RM, or the voltage UR at both ends of the RM,

Can get the input current is: $I_P = K_N * I_S = K_N * (U_R/R_M)$

Overall Dimension Specification Unit: mm

This product is a molded part, the material is PC+PBT, the shape and installation size tolerance is in accordance with GB/T14486-2008 MT6.

Tolerance		Size range (mm)												
class	0~3	3~6	6~10	10~14	14~18	18~24	24~30	30~40	40~50	50~65	65~80	80~100	100`120	120~140
MT6	±0.23	±0.26	±0.29	±0.33	±0.27	±0.41	±0.45	±0.50	±0.57	±0.65	±0.74	±0.84	±0.96	±1.10

Official wechat:hypower-cn

Contact us

Hangyu Power System (Shanghai) Co., Ltd

Mobile/Whatsapp: +8613801800699

Fax: +86-21-67285228-8009 Email:sales@hangyupower.com neo@hangyupower.com

Address: Building B, 11th Floor, No. 1698 Minyi Road, Songjiang District, Shanghai.PRChina

website:www.hangyupower.com

[®]Hangyu Power System, 2024 Current Sensor Sample, version 01.00, March 2024 All technical data and instructions are based on the actual product If there is any change, Hangyu Power has the final interpretation right

Authorized distributor: