

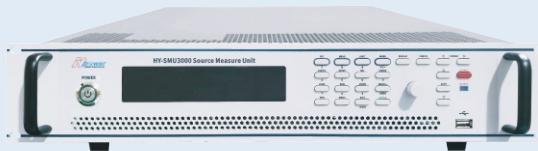
Hangyu Power System (Shanghai) Co., Ltd.



# HY-SMUSU 3000 Source Measure Unit

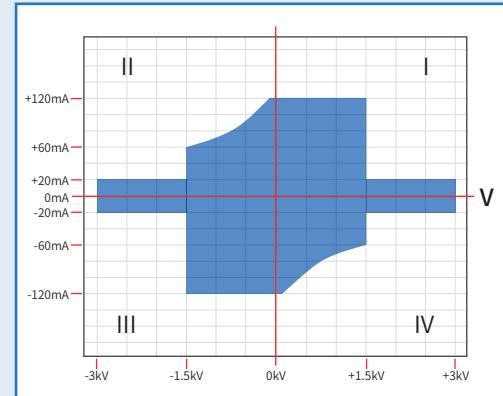
Technology Leads The Future

Source Meter, Breaking The Boundaries Of Imagination




[www.hangyupower.com](http://www.hangyupower.com)

# HY-SMUSU 3000




## ■ Product Introduction



The HY-SMUSU 3000 is a high voltage, high power, low current source measure unit (SMU) instrument that delivers unprecedented power, precision, speed, flexibility, and ease of use to improve productivity in R&D, production test, and reliability environments.

The HY-SMUSU 3000 offers the highest power and best low current performance in the industry. It is designed specifically for characterizing and testing high voltage electronics and power semiconductors, such as diodes, FETs, and IGBTs, as well as other components and materials in which high voltage, fast response, and precise measurements of voltage and current are required.



HY-SMUSU 3000 can source or sink up to 3000V/20mA or 1500V/120mA

## ■ Product Function

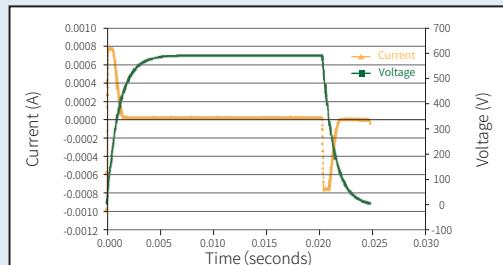
- It offers highly flexible, four-quadrant voltage and current source/load coupled with precision voltage and current meters
- Source or sink up to 180W of DC or pulsed power ( $\pm 3000V/20mA$ ,  $\pm 1500V/120mA$ )
- 1fA low current resolution
- Dual 22-bit precision ADCs and dual 18-bit 1 $\mu$ s per point digitizers for high accuracy and high speed transient capture
- Easy compatibility with other digital source tables for system integration
- Combines a precision power supply, current source, DMM, arbitrary waveform generator, V or I pulse generator, electronic 18-bit load, and trigger controller-all in one instrument

## ■ Can Be Used As

|                                                |                                                                           |
|------------------------------------------------|---------------------------------------------------------------------------|
| ■ Semiconductor characterization instrument    | ■ True current source                                                     |
| ■ V or I waveform generator                    | ■ Digital multimeter (DCV, DCI, ohms, and power with 6½-digit resolution) |
| ■ V or I pulse generator                       | ■ Precision electronic load                                               |
| ■ Precision power supply with V and I readback |                                                                           |

## ■ Application Field




Ideal for current/voltage characterization and functional test of a wide range of today's modern electronics and devices, including:

- Power semiconductor device characterization and testing
- Characterization of GaN, SiC, and other compound materials and devices
- Breakdown and leakage testing to 3kV
- Characterization of sub-millisecond transients

## ■ Two Measurement Modes: Digitizing Or Integrating

Precisely characterize transient and steady-state behavior, including rapidly changing thermal effects, with the two measurement modes in the HY-SMUSU 3000. Each mode is defined by its independent analog-to-digital (A/D) converters.

The digitizing measurement mode provides speeds up to 1 $\mu$ s per sample. The dual 18-bit digitizers allow you to capture voltage and current transients simultaneously. In the integrating measurement mode, the dual 22-bit integrating analog to digital converters allow more precise measurement of voltage and current. Two A/D converters are used with each measurement mode, one for current and the other for voltage, that run simultaneously for accurate source readback that does not sacrifice test throughput.



The dual high speed A/D converters sample as fast as 1 $\mu$ s per point, enabling full simultaneous characterization of both voltage and current.

## ■ Standard Features And Functions

- Flexibility for use as either a bench-top I-V characterization tool or as a building block component of multiple channel I-V test systems
- Perform common I-V tests quickly and easily without programming or software installation
- 14 digital I/O lines for direct connection to a probe station, component handler, or other automation tools
- USB port for extra data and test program storage via USB memory device. Instrument Control Start-up Software

## ■ Upper Computer Software

Upper computer instrument control/start-up software enables users to start making measurements in minutes without programming. In most cases, users merely need to make some quick measurements, graph the data, and store the data to disk for later analysis in software environments such as Excel. Upper computer offers:

- Configure and control up to four SMU instruments for DC or Pulsed I-V test in either the same app, same project, or a combination of the two
- Create tests by mixing any other HY-SMUSU instruments from Hangyu Power (DC only).
- Differentiate HY-SMUSU instrument channels and their measurement data using labels that are relevant to your device or module
- Native X-Y graphing, panning, and zooming; screenshot capturing of graphs
- Spreadsheet/tabular viewing of data; export data for further analysis
- Annotating of tests; save test setups
- GPIB, USB 2.0, Ethernet compliance

## ■ Voltage Accuracy Specifications<sup>1</sup>

| Range | Source                 |                                | Measure            |                                                             |                                                            |
|-------|------------------------|--------------------------------|--------------------|-------------------------------------------------------------|------------------------------------------------------------|
|       | Programming Resolution | Accuracy $\pm$ (% rdg + volts) | Display Resolution | Integrating ADC Accuracy <sup>2</sup> $\pm$ (% rdg + volts) | High Speed ADC Accuracy <sup>3</sup> $\pm$ (% rdg + volts) |
| 200V  | 5mV                    | 0.03%+50mV                     | 100 $\mu$ V        | 0.025%+50mV                                                 | 0.05%+100mV                                                |
| 500V  | 10mV                   | 0.03%+125mV                    | 100 $\mu$ V        | 0.025%+100mV                                                | 0.05%+200mV                                                |
| 1500V | 40mV                   | 0.03%+375mV                    | 1mV                | 0.025%+300mV                                                | 0.05%+600mV                                                |
| 3000V | 80mV                   | 0.03%+750mV                    | 1mV                | 0.025%+600mV                                                | 0.05%+1.2V                                                 |

# HY-SMUSU Technical Parameters

## ■ Current Accuracy Specifications<sup>4</sup>

| Range | Programming Resolution | Source                                                                     |                    | Measure                                                                                                              |                                                                                                                     |
|-------|------------------------|----------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|       |                        | Accuracy<br>± (% reading + amperes<br>+ proportional offset<br>in amperes) | Display Resolution | Integrating ADC Accuracy <sup>2</sup><br>± (% reading + amperes <sup>5</sup><br>+ proportional offset<br>in amperes) | High Speed ADC Accuracy <sup>3</sup><br>± (% reading + amperes <sup>5</sup><br>+ proportional offset<br>in amperes) |
| 1nA   | 30fA                   | $0.1\% + 2pA + *V_o \times E^{-15}$                                        | 1fA                | $0.1\% + 1.2pA + *V_o \times E^{-15}$                                                                                | $0.2\% + 1.2pA + *V_o \times E^{-15}$                                                                               |
| 10nA  | 300fA                  | $0.1\% + 5pA + *V_o \times E^{-14}$                                        | 10fA               | $0.1\% + 5pA + *V_o \times E^{-15}$                                                                                  | $0.2\% + 5pA + *V_o \times E^{-15}$                                                                                 |
| 100nA | 3pA                    | $0.1\% + 60pA + *V_o \times E^{-13}$                                       | 100fA              | $0.1\% + 60pA + *V_o \times E^{-13}$                                                                                 | $0.2\% + 60pA + *V_o \times E^{-13}$                                                                                |
| 1μA   | 30pA                   | 0.03%+700pA                                                                | 1pA                | 0.025%+400pA                                                                                                         | 0.08%+800nA                                                                                                         |
| 10μA  | 300pA                  | 0.03%+5nA                                                                  | 10pA               | 0.025%+1.5nA                                                                                                         | 0.08%+3nA                                                                                                           |
| 100μA | 3nA                    | 0.03%+60nA                                                                 | 100pA              | 0.02%+25nA                                                                                                           | 0.05%+50nA                                                                                                          |
| 1mA   | 30nA                   | 0.03%+300nA                                                                | 1nA                | 0.02%+200nA                                                                                                          | 0.05%+400nA                                                                                                         |
| 2mA   | 60nA                   | 0.03%+1.2μA                                                                | 1nA                | 0.02%+500nA                                                                                                          | 0.05%+1μA                                                                                                           |
| 20mA  | 600nA                  | 0.03%+12μA                                                                 | 10nA               | 0.02%+5μA                                                                                                            | 0.05%+10μA                                                                                                          |
| 120mA | 3μA                    | 0.03%+36μA                                                                 | 100nA              | 0.02%+24μA                                                                                                           | 0.05%+50μA                                                                                                          |

\* $V_o$  is the output voltage.

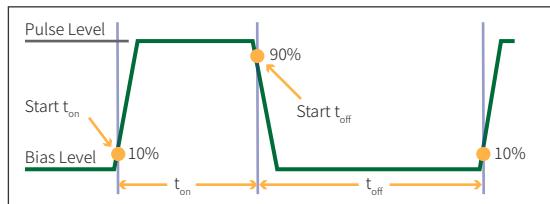
### Notes:

1. For temperatures 0° to 18°C and 28° to 50°C, accuracy is degraded by  $\pm(0.15 \times \text{accuracy specification})^{\circ}\text{C}$ ;
2. Derate accuracy specification for NPLC setting <1 by increasing error term. Add appropriate typical percent of range term for resistive loads using the table below:

| NPLC Setting | 200V and 500V Ranges | 1500V and 3000V Ranges | 100nA Range | 1μA to 120mA Ranges |
|--------------|----------------------|------------------------|-------------|---------------------|
| 0.1          | 0.01%                | 0.01%                  | 0.01%       | 0.02%               |
| 0.01         | 0.08%                | 0.07%                  | 0.1%        | 0.08%               |
| 0.001        | 0.8%                 | 0.6%                   | 1%          | 0.7%                |

3. 18-bit ADC. Average of 1000 samples taken at 100μs interval<sup>st</sup>;

4. For temperatures 0° to 18 °C and 28 ° to 50 °C, accuracy is degraded by  $\pm(0.15 \times \text{accuracy specification})/{\circ}\text{C}$ . 1nA to 10μA accuracy is degraded by  $\pm(0.35 \times \text{accuracy specification})/{\circ}\text{C}$ ;


5. Offset (amperes) is typical for 1nA range.

## ■ Pulse<sup>6</sup> Characteristics

|                                    |       |
|------------------------------------|-------|
| Pulse Width Programming Resolution | 1μs   |
| Pulse Width Programming Accuracy   | ±10μs |
| Pulse Width Jitter                 | 7μs   |

### Notes:

6. Times measured from the start of pulse to the start off-time; see figure below.



## ■ Supplementary Features

| Voltage Source Output Settling Time | Time required to reach within 1% of final value after source level command is processed on a fixed range <sup>7</sup><br>$R_L=10\Omega$                    | Range         | Settling time |               |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|
|                                     |                                                                                                                                                            | 200V          | < 5ms         |               |
|                                     |                                                                                                                                                            | 500V          | < 5ms         |               |
|                                     |                                                                                                                                                            | 1500V         | < 5ms         |               |
|                                     |                                                                                                                                                            | 3000V         | < 7ms         |               |
| Current Source Output Settling Time | Time required to reach within 1% of final value after source level command is processed on a fixed range<br>Values below for $V = I_{OUT} \times R_{LOAD}$ | Current Range | $R_{LOAD}$    | Settling Time |
|                                     |                                                                                                                                                            | 120mA         | 12.5kΩ        | < 5ms         |
|                                     |                                                                                                                                                            | 20mA          | 50kΩ          | < 5ms         |
|                                     |                                                                                                                                                            | 2mA           | 500kΩ         | < 10ms        |
|                                     |                                                                                                                                                            | 1mA           | 1MΩ           | < 5ms         |
|                                     |                                                                                                                                                            | 100μA         | 10MΩ          | < 15ms        |
|                                     |                                                                                                                                                            | 10μA          | 100MΩ         | < 20ms        |
|                                     |                                                                                                                                                            | 1μA           | 1GΩ           | < 200ms       |
|                                     |                                                                                                                                                            | 100nA         | 10GΩ          | < 2s          |
|                                     |                                                                                                                                                            | 10nA          | 10GΩ          | < 2s          |
| Notes:                              |                                                                                                                                                            |               |               |               |

7. With measure and compliance set to the maximum current for the specified voltage range.

## ■ Additional Source Characteristics

|                                           |                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noise 10Hz to 20MHz                       | < 1.2V peak to peak, < 400mVRMS. 3000V range with a 20mA limit                                                                                                                                                                                                                        |
| Noise (peak to peak) 0.1Hz to 10Hz        | <b>Voltage:</b> 0.005% of range<br><b>Current:</b> 0.08% of range                                                                                                                                                                                                                     |
| Overshoot                                 | <b>Voltage:</b> < ±1% for 1500V and 3000V ranges. Step size = 10% to 90% of range, resistive load, maximum current limit/compliance<br><b>Current:</b> < ±1%. Step size = 10% to 90% of range, resistive load. See Current source output settling time for additional test conditions |
| Range Change Overshoot                    | <b>Voltage:</b> < 1% of larger range. Overshoot into a 100kΩ load, 20MHz bandwidth<br><b>Current:</b> < 5% of larger range. $I_{OUT} \times R_{LOAD} = 100V$                                                                                                                          |
| Guard Offset Voltage                      | < 4mV (100kΩ guard impedance). Current < 700μA                                                                                                                                                                                                                                        |
| Remote Sense Operating Range <sup>8</sup> | Maximum voltage between HI and SENSE HI = 3V<br>Maximum voltage between LO and SENSE LO = 3V                                                                                                                                                                                          |
| Voltage Output Headroom                   | <b>3000V Range:</b> Maximum output voltage = 3030V – (total voltage drop across source leads)<br><b>1500V range:</b> Maximum output voltage = 1515V – (total voltage drop across source leads)                                                                                        |
| Overtemperature Protection                | Internally sensed temperature overload puts the instrument in standby mode                                                                                                                                                                                                            |
| Limit (compliance)                        | Bipolar limit (compliance) set with a single value<br><b>Voltage<sup>9</sup>:</b> Minimum value is 20V; accuracy is the same as voltage source<br><b>Current<sup>10</sup>:</b> Minimum value is 100pA; accuracy is the same as current source                                         |

Notes:

8. Add 50μV to source accuracy specifications per volt of HI lead drop;

9. For sink operation (quadrants II and IV) without sink mode enabled, add 0.6 percent of limit range to the corresponding voltage source accuracy specifications. Specifications apply with sink mode enabled;

10. For sink operation (quadrants II and IV) without sink mode enabled, add 0.6 percent of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode enabled.

## ■ Additional Characteristics

|                               |                                               |
|-------------------------------|-----------------------------------------------|
| Maximum Load Capacitance      | Normal mode 100nF, High-capacitance mode 10μF |
| Common Mode Voltage           | 250VDC                                        |
| Common Mode Isolation         | >1GΩ, <4500pF                                 |
| Sense High Input Impedance    | >100TΩ                                        |
| Maximum Sense Lead Resistance | 1kΩ for rated accuracy                        |
| Overrange                     | 101% of source range, 101% of measure range   |

# HY-SMUSU Technical Parameters

## ■ High-Capacitance Mode Characteristics<sup>11,12</sup>

|                                       |                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Accuracy Characteristics              | Accuracy characteristics are applicable in both normal and high-capacitance modes                                                                                                                                                                                                                |                                                                                 |                                                                      |
| Voltage Source Output Settling Time   | Time required to reach within 1% of final value after source level command is processed on a fixed range for the maximum current limit of the given range <sup>13</sup><br>The values in the right column are applicable when $V_{OUT} = 100V$                                                   | Voltage Source Range<br>200V-500V<br>1500V<br>3000V                             | Settling Time with $C_{LOAD} = 4.7\mu F$<br>< 5ms<br>< 7ms<br>< 30ms |
| Current Measure Settling Time         | Time required to reach within 1% of final value after voltage source is stabilized on a fixed range<br>The values in the right column are applicable when $V_{OUT} = 1kV$                                                                                                                        | Current Measure Range<br>2mA-120mA<br>100 $\mu A$ -1mA<br>1 $\mu A$ -10 $\mu A$ | Settling Time<br><100 $\mu s$<br><3ms<br><230ms                      |
| Mode Change Delay                     | <b>Current ranges of 100<math>\mu A</math> and above:</b> 11ms delay for both in and out of high-capacitance mode; 11ms delay out of high-capacitance mode<br><b>Current ranges below 100<math>\mu A</math>:</b> 250ms delay into high-capacitance mode; 11ms delay out of high-capacitance mode |                                                                                 |                                                                      |
| Measure Input Impedance               | > 30G $\Omega$ in parallel with 150pF                                                                                                                                                                                                                                                            |                                                                                 |                                                                      |
| Voltage Source Range Change Overshoot | < 400mV + 0.1% of larger range. Overshoot into a 100k $\Omega$ load, 20MHz bandwidth                                                                                                                                                                                                             |                                                                                 |                                                                      |

Notes:

11. High-capacitance mode specifications are for dc measurements only and use locked ranges. Autorange is disabled;

12. 100nA range and below are not available in high-capacitance mode;

13. With measure and compliance set to the maximum current for the specified voltage range.

## ■ Measurement Speed Characteristics<sup>14</sup>

Maximum sweep operation rates (operations per second) for 60Hz (50Hz)

| A/D Converter Speed | Trigger Origin | Measure to Memory (using user scripts) | Measure to GPIB (using user scripts) | Source Measure to Memory (using user scripts) | Source Measure to GPIB (using user scripts) | Source Measure to Memory (using sweep API) | Source Measure to GPIB (using sweep API) |
|---------------------|----------------|----------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|
| 0.001 NPLC          | Internal       | 20000 (20000)                          | 9800 (9800)                          | 7000 (7000)                                   | 6200 (6200)                                 | 12000 (12000)                              | 5900 (5900)                              |
| 0.001 NPLC          | Digital I/O    | 8100 (8100)                            | 7100 (7100)                          | 5500 (5500)                                   | 5100 (5100)                                 | 11200 (11200)                              | 5700 (5700)                              |
| 0.01 NPLC           | Internal       | 4900 (4000)                            | 3900 (3400)                          | 3400 (3000)                                   | 3200 (2900)                                 | 4200 (3700)                                | 4000 (3500)                              |
| 0.01 NPLC           | Digital I/O    | 3500 (3100)                            | 3400 (3000)                          | 3000 (2700)                                   | 2900 (2600)                                 | 4150 (3650)                                | 3800 (3400)                              |
| 0.1 NPLC            | Internal       | 580 (480)                              | 560 (470)                            | 550 (465)                                     | 550 (460)                                   | 560 (470)                                  | 545 (460)                                |
| 0.1 NPLC            | Digital I/O    | 550 (460)                              | 550 (460)                            | 540 (450)                                     | 540 (450)                                   | 560 (470)                                  | 545 (460)                                |
| 1.0 NPLC            | Internal       | 59 (49)                                | 59 (49)                              | 59 (49)                                       | 59 (49)                                     | 59 (49)                                    | 59 (49)                                  |
| 1.0 NPLC            | Digital I/O    | 58 (48)                                | 58 (49)                              | 59 (49)                                       | 59 (49)                                     | 59 (49)                                    | 59 (49)                                  |
| High-speed ADC      | Internal       | 38500 (38500)                          | 18000 (18000)                        | 10000 (10000)                                 | 9500 (9500)                                 | 14300 (14300)                              | 6300 (6300)                              |
| High-speed ADC      | Digital I/O    | 12500 (12500)                          | 11500 (11500)                        | 7500 (7500)                                   | 7000 (7000)                                 | 13200 (13200)                              | 6000 (6000)                              |

Notes:

14. Exclude current measurement ranges less than 1mA.

Maximum single measurement rates (operations per second) for 60Hz (50Hz)

| A/D Converter Speed | Trigger Origin | Measure to GPIB | Source Measure to GPIB | Source Measure Pass/Fail to GPIB |
|---------------------|----------------|-----------------|------------------------|----------------------------------|
| 0.001 NPLC          | Internal       | 1900 (1800)     | 1400 (1400)            | 1400 (1400)                      |
| 0.01 NPLC           | Internal       | 1450 (1400)     | 1200 (1100)            | 1100 (1100)                      |
| 0.1 NPLC            | Internal       | 450 (390)       | 425 (370)              | 425 (375)                        |
| 1.0 NPLC            | Internal       | 58 (48)         | 57 (48)                | 57 (48)                          |

## Other technical indicators

|                                       |                              |
|---------------------------------------|------------------------------|
| Maximum Measurement Range Change Rate | > 4000 per second for > 10µA |
| Maximum Source Range Change Rate      | > 250 per second > 10µA      |
| Maximum Source Function Change Rate   | > 90 per second              |

## ■ Triggering And Synchronization Characteristics

|                 |                                                      |        |
|-----------------|------------------------------------------------------|--------|
| Triggering      | Trigger In to Trigger Out                            | 0.5µs  |
|                 | Trigger In to Source Change <sup>15</sup>            | 10µs   |
|                 | Trigger Timer Accuracy                               | ±2µs   |
|                 | Source Change <sup>15</sup> after Trigger            | 280µs  |
| Synchronization | Multi-node Synchronized Source Change <sup>15</sup>  | <0.5µs |
|                 | Single-node Synchronized Source Change <sup>15</sup> | <0.5µs |

Notes:

15. Fixed source range with no polarity change.

## Supplemental Information

|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Front-panel Interface                             | Two-line vacuum fluorescent display (VFD) with keypad and navigation wheel                                                                                                                                                                                                                                                                                                                                                                           |
| Display                                           | 1, Show error messages and user-defined messages<br>2, Display source and limit settings<br>3, Show current and voltage measurements<br>4, View measurements stored in dedicated reading buffers                                                                                                                                                                                                                                                     |
| Keypad Operations                                 | 1, Change host interface settings<br>2, Save and restore instrument setups<br>3, Load and run factory and user-defined test scripts that prompt for input and send results to the display<br>4, Store measurements into dedicated reading buffers                                                                                                                                                                                                    |
| Reading Buffers                                   | Nonvolatile memory uses dedicated storage areas reserved for measurement data. Reading buffers are arrays of measurement elements. Each element can store the following items:<br>1, Measurement<br>2, Source setting (at the time the measurement was taken)<br>3, Measurement status<br>4, Range information<br>5, Timestamp<br>Reading buffers can be filled using the front-panel STORE key and retrieved using the RECALL key or host interface |
| Buffer Size, with Timestamp and Source Setting    | > 60000 samples                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Buffer Size, without Timestamp and Source Setting | > 140000 samples                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# HY-SMUSU Technical Parameters

## ■ Digital I/O Interface

|                                                              |                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connector                                                    | 25-pin female D                                                                                                                                                                                                                                                                                                                                                                    |
| Input/Output Pins                                            | 14 open drain I/O bits                                                                                                                                                                                                                                                                                                                                                             |
| Absolute Maximum Input Voltage                               | 5.25V                                                                                                                                                                                                                                                                                                                                                                              |
| Absolute Minimum Input Voltage                               | -0.25V                                                                                                                                                                                                                                                                                                                                                                             |
| Maximum Logic Low Input Voltage                              | 0.7V, +850µA                                                                                                                                                                                                                                                                                                                                                                       |
| Minimum Logic High Input Voltage                             | 2.1V, +570µA                                                                                                                                                                                                                                                                                                                                                                       |
| Maximum Source Current (flowing out of digital I/O bit)      | +960µA                                                                                                                                                                                                                                                                                                                                                                             |
| Maximum Sink Current At Maximum Logic Low Voltage (0.7)      | -5.0mA                                                                                                                                                                                                                                                                                                                                                                             |
| Absolute Maximum Sink Current (flowing into digital I/O pin) | -11mA                                                                                                                                                                                                                                                                                                                                                                              |
| 5V Power Supply Pin                                          | Limited to 250mA, solid-state fuse protected                                                                                                                                                                                                                                                                                                                                       |
| Safety Interlock Pin                                         | Active high input > 4.0V at 50mA must be externally applied to this pin to allow the high-voltage output to operate. Connect the 5V output and the interlock input of the 25-pin digital I/O connector on the back of the HY-SMUSU 3000 to the switch in your fixture. The output will be disabled when the interlock signal is < 4.0V<br>Absolute maximum input is -0.4V to +6.0V |

## General Specifications

(Default mode unless specified)

|                                              |                                                                                                                                                                                                                                                                      |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEEE-488                                     | IEEE Std 488.1 compliant. Supports IEEE Std 488.2 common commands and status model topology                                                                                                                                                                          |
| RS-232                                       | Baud rates from 300 bps to 115200 bps<br>Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none)<br>When not programmed as the active host interface, the HY-SMUSU 3000 can use the RS-232 interface to control other instruments |
| Ethernet                                     | RJ-45 connector, 10/100BT, Auto-MDIX                                                                                                                                                                                                                                 |
| USB File System                              | USB 2.0 Host: Mass storage class device                                                                                                                                                                                                                              |
| Power Supply                                 | 100VAC to 240VAC, 50Hz or 60Hz, 350VA maximum                                                                                                                                                                                                                        |
| Cooling                                      | Forced air; side and top intake and rear exhaust                                                                                                                                                                                                                     |
| Size                                         | 482mm (W) × 630mm (D) × 88mm (H)                                                                                                                                                                                                                                     |
| Weight                                       | 10.7kg                                                                                                                                                                                                                                                               |
| Operating Ambient (Temperature And Humidity) | 0 °C to 50 °C, 20%-90% RH, no dew formation (For indoor use only)                                                                                                                                                                                                    |
| Altitude                                     | Maximum 2000m above sea level                                                                                                                                                                                                                                        |
| Storage Ambient Temperature                  | -25°C to 65°C                                                                                                                                                                                                                                                        |



Official wechat: hypower-cn



## Contact us

---

Hangyu Power System (Shanghai) Co., Ltd.

Mobile/Whatsapp:+8613801800699

Fax:+86-21-67285228-8009

Email:sales@hangyupower.com

neo@hangyupower.com

Address: Block B, Building 11, No. 1698 Minyi Road, Songjiang District, Shanghai

Web:www.hangyupower.com

©Hangyu Power System, 2024

HY-SMUSU 3000 Source Measure Unit, Version 02.03, June 2025

All technical data and instructions are based on the actual product

If there is any change, Hangyu Power has the final interpretation right

Authorized distributor:

