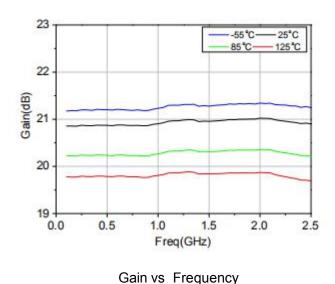


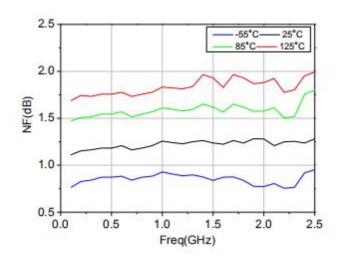
Features

- ·Freq:0.1-2.5 GHz
- ·NF:1.3 dB
- ·Gain:21dB
- ·Gain Flatness:±0.1dB
- ·OP-1dB:21 dBm
- ·Psat Satisfaction:21 dBm
- ·OIP3:34 dBm
- ·Supply Voltage:+5V/14mA
- ·50Ω Input/ Output
- ·Size:0.7×0.65×0.1mm³

Functional Diagram

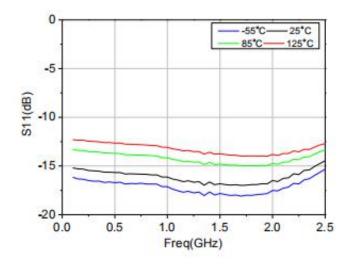
General Description

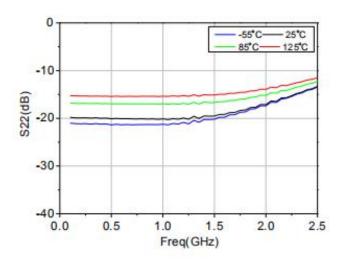

MC10208 is a Low Noise Amplifier which operates during 0.1 - 2.5GHz.The amplifier Provides 21 dB of gain and 13.5 dBm of P-1dB Output power from a single bias supply of +5V/14mA with a noise figure of 1.3 dB. The Chip applies the on-chip metallization through-hole technology thus no need for additional grounding measures which makes it easy and convenient to use The backside of the chip is metallized. suitable for conductive adhesive bonding or eutectic mounting process.

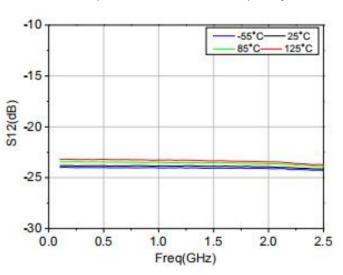

Electrical Specifications (T_A=+25°C, 50Ω system,VD=+5V, Idd=14mA)

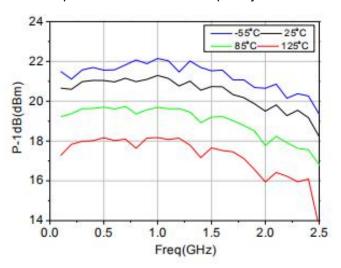
Parameter		Min.	Тур.	Max.	Unit
Frequency Range	Freq	0.1	-	2.5	GHz
Gain	Gain	-	21	-	dB
Gain Flatness	 ∆ Gain	-	±0.1	-	dB
Noise Figure	NF	-	1.3	-	dB
Output P-1dB	P-1dB	-	21	-	dBm
Input Return Loss	IRL	-	-15	-	dB
Output Return Loss	ORL	-	-15	-	dB
Saturated Output Power	Psat	-	21	-	dBm
Output Third Order Intercept Point	OIP3	-	34	-	dBm
Quiescent Current	ldd	-	14	-	mA

[1] The chips are 100% DC and RF tested.

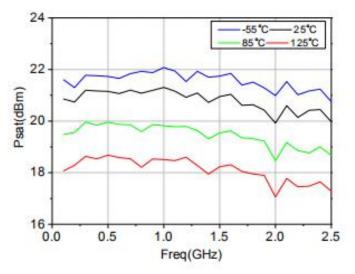

Typical Testing Characteristics




NF vs Frequency

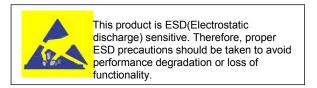



Input Return Loss vs Frequency

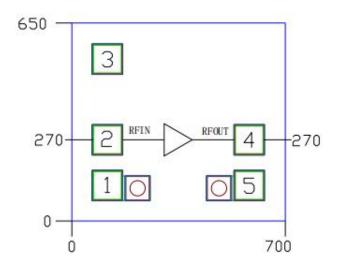

Output Return Loss vs Frequency

Reverse Isolationvs Frequency

Output P-1dB vs Frequency


OIP3 vs Frequency

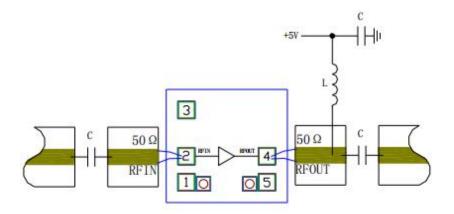
Psat vs Frequency


Absolute Maximum Ratings

7 toodiato maxiimani	i tatii igo			
Parameter Limits	Value			
Input Power Pin,50Ω	15dBm			
Drain Bias Voltage VD	+6V			
Storage Temperature	-65~+150°C			
Operating Temperature	-55~+125℃			
Mounting Temperature (30s,N ₂ Protection)	300℃			
Exceeding the above conditions may cause permanent damage to the chip				

- ·Assembling in a clean environment.
- ·Avoiding rapid temperature changes during the mounting process.
- Do not touch the surface or use dry/wet chemical methods to clean the surface
- ·2 bonding wires for input and output (in figure eight), the bonding wires should be as short as possible.
- ·Storing in a dry, N₂ protection environment.

Outline Drawing


Notes:

- 1. Unit:µm
- 2. Back Side Metallization: Gold
- 3. Back side metal is ground
- 4. Bonding pad size: 100µm
- 5. Outline Dimensional Tolerance:±50 µm

Pad Descriptions

Pad No.	Function	Description	Interface Schematic
2	RFIN	RF signal input terminal, external 50Ω system, without blocking capacitor inside	RFIN OH
4	RFOUT	RF Signal output, external 50Ω system, External blocking capacitor and choke inductance required	-Li-RFOUT
1, 5	GND	Grounding pad for the probe test	GND
Die Bottom	GND	Die bottom must be connected to RF/DC ground	GND -

Assembly Diagram

