

Features

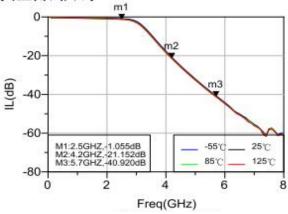
- ·Freq:DC-2.5GHz
- ·Insertion Loss:1.1dB
- ·Stopband attenuation:21dB@4.2GHz 40dB@5.7GHz
- ·RF1 Return Loss:-18dB
- ·RF2 Return Loss:-18dB
- ·Size:1.6×0.75×0.1mm3

Functional Diagram

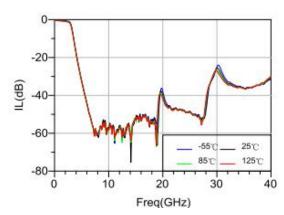
Electrical Specifications ($T_A=+25^{\circ}C$, 50Ω system)

General Description

MC1727 is a low-pass filter chip with a passband frequency range of DC-2.5GHz, and a typical passband insertion loss of

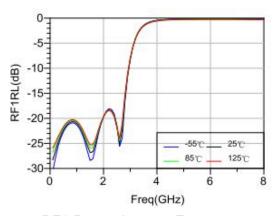

The Chip applies the on-chip metallization through-hole technology thus no need for additional grounding measures makes it easy and convenient to use The backside of the chip is metallized, suitable for conductive adhesive bonding or eutectic

mounting process.

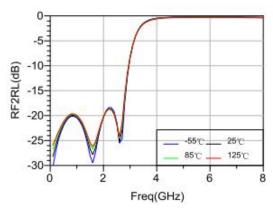

				· · · J · · · · · ·	
Parameter		Min.	Тур.	Max.	Unit
Frequency Range	Freq	DC	-	2.5	GHz
Insertion Loss	IL	-	1.1	-	dB
RF1 Return Loss	RF1RL	-	-18	-	dB
RF2 Return Loss	RF2RL	-	-18	-	dB
Stopband attenuation @4.2GHz	ISO	-	21	-	dB
Stopband attenuation @5.7GHz	ISO	-	40	-	dB

^[1] The chips are 100% DC and RF tested.


Typical Testing Characteristics


Insertion Loss VS Frequency

Insertion Loss VS Frequency



Insertion Loss VS Frequency

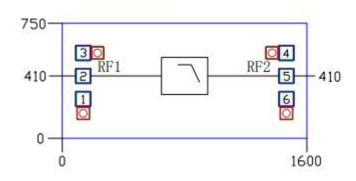
RF1 Return Loss vs Frequency

RF2 Insertion Loss VS Frequency

Absolute Maximum Ratings

Parameter Limits	Value			
Input Power Pin, 50Ω	30dBm			
Storage Temperature	-65~+150°C			
Operating Temperature	-55~+125℃			
Mounting Temperature (30s,N ₂ Protection)	300℃			
Exceeding the above conditions may cause				

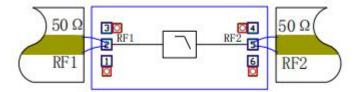
permanent damage to the chip


This product is ESD(Electrostatic discharge) sensitive. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

- · Assembling in a clean environment.
- · Avoiding rapid temperature changes during the mounting process.
- ·Do not touch the surface or use dry/wet chemical methods to clean the surface.
- ·2 bonding wires for input and output (in figure eight), the bonding wires should be as short as possible.
- Storing in a dry, N₂ protection environment.

Pad Descriptions

Pad No.	Function	Description			
2	RF1	RF signal input/output terminal, external 50 Ω system			
5	RF2	RF signal input/output terminal, external 50Ω system			
1, 3, 4, 6	GND	Grounding pad for the probe test			
Die Bottom	GND	Die bottom must be connected to RF/DC ground			


Outline Drawing

Notes:

- 1.Unit:µm
- 2.Back Side Metallization:Gold
- 3.Back side metal is ground
- 4.Bonding pad size: 100µm
- 5.Outline Dimensional Tolerance:±50 µm

Assembly Diagram

