V 1.1 of MEMS integrated navigation system.

BS-MN200

Product characteristics

- (\bigwedge 0.2 ° roll & pitch attitude accuracy (GNSS valid)
- \rightarrow 0.1 ° azimuth accuracy (2m antenna baseline)
- 2 °/H & 4 °/H gyroscope bias stability selectable (Allan)
- (30 µg & 60 µg acceleration bias stability optional (Allan)

Field of application

UAV Navigation Robot Navigation AUV Navigation

Various air carriers flight navigation land vehicle navigation ROV navigation

1-General

BS-MN200 integrated navigation system has built-in high-performance MEMS gyroscope and accelerometer, which can receive external GNSS data, realize multi-sensor fusion and integrated navigation algorithm, and has short-term inertial navigation capability when GNSS is invalid.

The product has high reliability and strong environmental adaptability. By matching different software, the products can be widely used in the fields of tactical and industrial unmanned aerial vehicles, unmanned vehicles, unmanned ships, aviation guided bombs, intelligent ammunition, rockets, mobile communication, mapping, seeker and stable platform.

The product is divided into low configuration version (BS-MN200A-M-D6EC) and high configuration version (BS-MN200B-M-D6EC). The precision and price of the two products are different, which is convenient for users to choose based on specific use conditions.

2. Functions and indicators

2.1 Main functions

The integrated navigation system can use the satellite navigation information received from the outside to carry out integrated navigation, and output the pitch, roll, course, position, speed, time and other information of the carrier; After losing the signal, it outputs the position, velocity and attitude information of inertial solution, and has a certain navigation accuracy maintenance function in a short time. When combined with navigation, it can output the raw information that can be used for post-processing to be processed by the IE post-processing software of NovAtel.

2.2 Performance indicators

The system performance is shown in Table 1.

Table 1 System Performance Requirements

Project		Metrics (RMS)	Remark
	Dual GNSS	0.1°	2m baseline
Heading	Single GNSS	0.2°	Need to maneuver
accuracy	GNSS failure retention	0.2°/min	BS-MN200B-M-D6EC
	accuracy	0.5°/min	BS-MN200A-M-D6EC
		0.1°	BS-MN200B-M-D6EC
	GNSS is valid	0.2°	BS-MN200A-M-D6EC
A 4414	GNSS failure retention	0.2°/min	BS-MN200B-M-D6EC
Attitude accuracy	accuracy	0.5°/min	BS-MN200A-M-D6EC
	V-G mode	2°	BS-MN200B-M-D6EC
	(GNSS failure time unlimited, no acceleration)	4°	BS-MN200A-M-D6EC
Horizontal	GNSS is valid	1.2m	Single-point L1/L2

Project		Metrics (RMS)	Remark
positioning		2cm+1ppm	RTK
accuracy		20m	BS-MN200B-M-D6EC
	GNSS failure (60s)	100m	BS-MN200A-M-D6EC
Horizontal	GNSS is valid	0.1m/s	Single-point L1/L2
	Measuring range	±450°/s	
Gyroscope	Zero-bias stability (Allan	2°/h	BS-MN200B-M-D6EC
	variance)	4°/h	BS-MN200A-M-D6EC
	Measuring range	±16g	Customizable 200
Accelerometer	Zero-bias stability (Allan	30µg	BS-MN200B-M-D6EC
	variance)	60µg	BS-MN200A-M-D6EC
	UART	Route 2	
Communicatio n interface	PPS	Route 1	Input, LVTTL
	SPI	Route 1	
	Voltage	3~3.6VDC	
Electrical characteristics	Power consumption	≤1.5W	
	Ripple	100 mV	P-P
Structural	Size	47 mm×44 mm	×14mm
characteristics	Weight	≤50g	
	Operating temperature	-40°C~+70°C	
Use	Storage temperature	-45°C~+75°C	
environment	Vibration	20~2000Hz ,	
	Impact	1000g, 0.5ms	
	MTBF	20000h	
Reliability	Life span	> 15 years	
	Continuous working time	>120h	
Note: Unless ot	herwise specified, the accuracy i	ndex refers to RMS	S.

3. Working principle

3.1 Product composition

The composition of the product is shown in Figure 1.

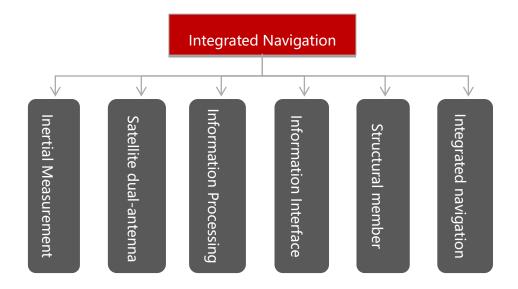
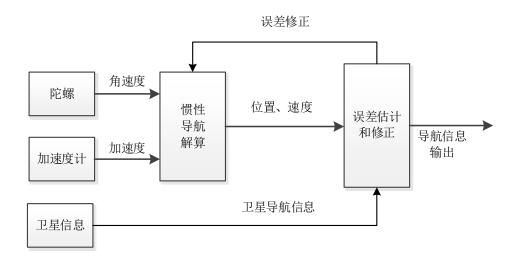



Figure 1 System composition

3.2 Fundamentals

The inertial measurement unit consists of three accelerometers and three gyroscopes and is used for measuring the acceleration and the angular velocity of a carrier and sending the information to the information processing circuit; and the information processing circuit performs navigation settlement by using the acceleration and the angular velocity measured by the inertial measurement unit and simultaneously receives satellite navigation information output by an external GNSS receiver as a reference to perform combined navigation, The navigation error of the inertial navigation is corrected, and the navigation information is output through the information interface circuit.

The basic principle is shown in Figure 2.

Fig. 2 Schematic diagram of working principle

4.Instructions for use

4.1 overall dimensions

The overall dimensions of the system are: 47mm × 44mm × 14mm (length × width ×

height), and the overall dimensions of the system are shown in Figure 3. (Note: Mounting holes can be threaded holes for M 2.5 or M 2.2 的通孔使用)

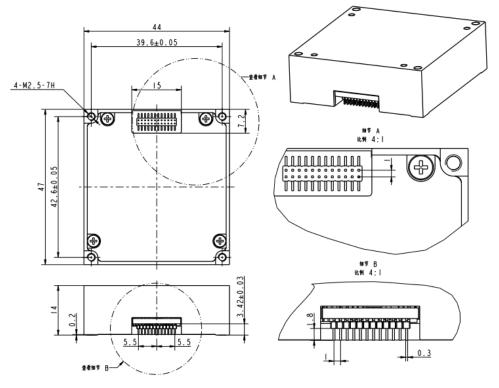


Fig. 3 Outline structure of integrated navigation system

4.2 Electrical interface

The contact sequence of the external connector of the system is shown in the figure below:

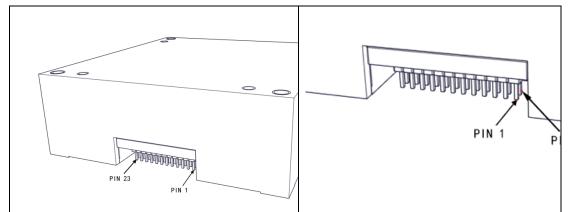


Fig. 4 Schematic diagram of external connector contact sequence of integrated navigation system

The external connector points are defined in Table 2.

Table 2 Connector Point Definition

Pin	Name	Туре	Description
10, 11, 12	VDD	Power source	
13, 14, 15	GND	Power source	

Pin	Name	Туре	Description
7	DIO1	Input/output	PPS input pin, falling edge trigger
9	DIO2	Input/output	
1	DIO3	Input/output	General purpose IO, configurable
2	DIO4	Input/output	
3	SPI-CLK	Input/output	
4	SPI-MISO	Input/output	SPI, master slave mode configurable,
5	SPI-MOSI	Input/output	default to slave mode
6	SPI-/CS	Input/output	
19	UART1-TXD	Output	UART, baud rate is configurable,
21	UART1-RXD	Input	default is 460800 bps
22	UART2-TXD	Output	UART, baud rate is configurable,
24	UART2-RXD	Input	default is 460800 bps
8	RST	Input	Reset
23	VDDRTC	Power source	
Other	NC	Spare	Retained by the manufacturer

4.3 Instructions for use

Workflow of 4.3.1 system

The system has two working modes, integrated navigation mode and inertial navigation mode. Wherein the combined navigation mode is a default working mode after being started. The default operating mode can be changed by command. If the setting is successful, it will return to the "cmd OK" ", otherwise, the cmd error" will be displayed. After the input is completed, type "saveconfig" to save the current configuration, and the current configuration will be automatically called after the next restart. If the command is not input, the configuration saved last time will be restored after the next restart.

The command for setting the combined navigation mode as the default working mode is as follows:

#moddgi

The command to set the inertial navigation mode to the default working mode is: #modins

4.3.1.1 integrated navigation mode flow

After entering the integrated navigation process, the system automatically enters the coarse alignment state, and the coarse alignment time is 3s; in the coarse alignment state, the system waits for effective satellite navigation information, and the integrated navigation system is required to be static during the coarse alignment; when the satellite navigation information is effective, the system enters the integrated navigation state,

otherwise, the system maintains the coarse alignment state; When the system is in the integrated navigation state, the integrated navigation system can move.

4.3.1.2 Inertial Navigation Mode Flow

After entering the inertial navigation process, the system automatically enters the coarse alignment state, the coarse alignment time is 3 s, the system waits for effective satellite navigation information in the coarse alignment state, and the integrated navigation system is required to be static during the coarse alignment; when the satellite navigation information is effective, the system enters the fine alignment state, otherwise, the system automatically enters the fine alignment state after waiting for the 1.5 s; After fine alignment for 1500 s, it will automatically switch to the inertial navigation state. When the system is in the state of fine alignment or inertial navigation, the integrated navigation system can move.

The 4.3.1.3 system is reset

During operation, input the "# reset" command, and the system will perform soft reset and display the startup information again.

4.3.2 system configuration instruction

4.3.2.1 Configuration Scheme and Storage

The integrated navigation system is externally provided with 2 serial ports, and the function distribution and relevant configuration of each serial port are shown in Table 3.

Table 3 Serial port function distribution of integrated navigation system

String slogan	Enter the project	Output items	Default
S			
COM1	 working mode instruction and flow control instruction; COM1 ~ COM2 baud rate, protocol and update rate configuration; 	 1.inspvasa、bdfpd、bdfpdb、bdfpdl、 gpfpd、INStest(0.2Hz、1Hz、5Hz、10Hz、 100Hz 200Hz, etc.); 2.rawimusb、rawdata、INSpost (200Hz); 3.Configure the prompt message. 	460800b ps; Output: bdfpdl 1Hz;
COM2	 working mode instruction and flow control instruction; COM1 ~ COM2 baud rate, protocol and update rate configuration; 	Same as item 1-3 in COM 1	460800b ps Output: INSpost

After the system is powered on and the start prompt information is displayed on the COM1 port, you can input the commands such as COM1 ~ COM2 serial port baud rate configuration, serial port protocol and update rate setting. If each command is output successfully, it will return to the "cmd OK" ", otherwise it will display the cmd error". After the input is completed, type "saveconfig" to save the current configuration. The current configuration will be called automatically after the next restart. If the command is not input, the serial port configuration will be restored to the last saved configuration after the next restart.

4.3.2.2 configuration query

Type the "log loglist" or "log rxstatus" command through the COM1 port to list all the configurations of COM1-COM2, including the following contents:

Serial port number, serial port baud rate, serial port protocol and update rate;

Open state of function module: including zero-speed correction state and smooth processing state, enable when open and disable when closed;

Initial binding longitude and latitude;

Initially binding the included angle between the double-antenna heading and the integrated navigation system heading;

Initial binding antenna mast arm value;

System number and date of manufacture;

Software version number: including pre-processing software version number and navigation software version number;

Operating mode: including integrated navigation (DGI) and pure inertial navigation (INS).

4.3.2.3 baud rate configuration

In this mode, enter the following command to enter the serial port baud rate configuration: com comX BAUDRATA

Where X is $1 \sim 2$ and BAUDRATA is the baud rate in bps.

For example, set the baud rate of the COM1 port to 115200 bps, and input the following command:

com com1 115200

4.3.2.4 protocol and update rate configuration

4.3.2.4.1 protocol and update rate configuration

Configure the output protocol of COM1 \sim COM2 through COM1, and the configuration command is as follows:

log comX LOG ontime updataTime

Where, comX can be the configuration number of com $1 \sim \text{com2}$; The updataTime represents the update time, which can be a period of 5 (0.2 Hz), 1 (1 Hz), 0.2 (5 Hz), 0.1 (10 Hz), 0.01 (100 Hz), etc., which can be divided by 200 Hz, and the unit is s.

LOG indicates the protocol name, which can be inspvasa, bdfpd, gpfpd, etc.

For example, if you want to configure the COM2 port to output 10Hz bdfpd data, you can input the following command through COM1:

log com2 bdfpd ontime 0.1

If 10Hz inspvasa data needs to be output at COM2 at the same time, the following command can be input through COM1:

log com2 inspvasa ontime 0.1

If you want to shut down a protocol, the configuration command is as follows:

log comX LOG off

Configure the rawdata protocol of COM 1 \sim COM2 ports through COM1, and the configuration commands are as follows:

log comX rawdata onchanged

If you want to close the rawdata protocol of the serial port, the configuration command is as follows:

log comX rawdata off

If you want to close all protocols of the serial port, the configuration command is as follows:

unlogall comX

It should be noted that increasing the update rate or outputting multiple protocols at the same time will increase the amount of data sent by the serial port. Before use, it is necessary to configure the appropriate baud rate, otherwise it may cause data loss. In general, the larger the amount of data, the higher the baud rate required.

4.3.2.4.2 protocol format

The output protocols supported by the product are shown in the following table. Table 4 Output Data Protocol Description

Serial	Data protocol	Type of	Output type	Support interface
number	name	agreement		
1	gpfpd	ASCII	ontime	COM1-COM2
2	bdfpd	ASCII	ontime	COM1-COM2
3	bdfpdb	Binary	ontime	COM1-COM2
4	Bdfpdb1	Binary	ontime	COM1-COM2
5	rawimusb	Binary	onchanged	COM1-COM2
6	inspvasa	ASCII	ontime	COM1-COM2
7	rawdata	Binary	onchanged	COM1-COM2
8	bdfpdl	ASCII	ontime	COM1-COM2

The ASCII type protocol conforms to the NMEA protocol format requirement and comprises the following fields: a statement identifier, a plurality of data fields,ChecksumEnd tag (with carriage return < CR > andLine break< LF >) separated by commas. Take the bdfpd protocol as an example, the format is as follows:

\$BDFPD,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>,<13>,<14>,<15>*xx< CR><LF>

The rawdata protocol includes rawimusb, rangecmpb, bestvelb, bestposb, headingb, and psrdopb. The contents of rangecmpb, bestvelb, bestposb, headingb and psrdopb protocols are shown in the NovAtel protocol description. The protocol formats of gpfpd, bdfpdbl, inspvasa, bdfpdb, and rawimusb are shown in the following table.

Table 5 gpfpd format

Serial	Name	Meaning	Data type	Unit
numb				
er				
1	\$GPFPD	Format header	_	
2	GPSWeek	Current Week Number	Integer	_
		Since 1980-1-6 (GMT)		
3	GPS cycles per	GPS cycles per second	Floating-poi	s
	second		nt type	
4	Yaw Angle	Yaw 0 ~ 360 degrees,	Floating-poi	Degree
		clockwise	nt type	
5	Pitch Angle	Pitch angle -90 ° ~ 90 °	Floating-poi	Degree
			nt type	
6	Roll Angle	Roll angle -180 ° ~ 180 °	Floating-poi	Degree
			nt type	
7	Latitude	Combined Output Latitude	Floating-poi	Degree
		-90 ° ~ 90 °	nt type	
8	Longitude	Combined output	Floating-poi	Degree
		longitude -180 ° ~ 180 °	nt type	
9	Height	Height of the combined	Floating-poi	m
		output	nt type	
10	East speed	Combined output east	Floating-poi	m/s
		speed	nt type	

Serial	Name	Meaning	Data type	Unit
numb				
er				
11	North speed	Combined output north	Floating-poi	m/s
		speed	nt type	
12	Sky speed	Combined output speed	Floating-poi	m/s
			nt type	
13	Baseline length	Distance between centers	Integer	Meters
		of two satellite antenna		
14	NSV1	Number of satellites for	Integer	А
		antenna 1		
15	NSV2	Number of satellites for	Integer	А
		antenna 2		
16	Satellite status	Satellite status 0:	Integer	—
		unavailable, 1: available		
17	Check code	Check code (value after	Hexadecima	
		exclusive or of number	1	
		between \$and *)		
18	<cr> <lf></lf></cr>	Fix the tail of the package	_	

Table 6 bdfpd format

Serial	Name	Meaning	Data type	Unit
numb				
er				
1	\$BDFPD	Format header	_	
2	GPSWeek	Current Week Number	Integer	_
		Since 1980-1-6 (GMT)		
3	GPS cycles per	GPS cycles per second	Floating-po	s
	second		int type	
4	Yaw Angle	Yaw 0 ~ 360 degrees,	Floating-po	Degree
		clockwise	int type	
5	Pitch Angle	Pitch angle -90 ° ~ 90 °	Floating-po	Degree
			int type	
6	Roll Angle	Roll angle -180 ° ~ 180 °	Floating-po	Degree
			int type	
7	Latitude	Combined Output Latitude	Floating-po	Degree
		-90 ° ~ 90 °	int type	
8	Longitude	Combined output	Floating-po	Degree
		longitude -180 ° ~ 1809 °	int type	
9	Height	Height of the combined	Floating-po	m
		output	int type	
10	East speed	Combined output east	Floating-po	m/s
		speed	int type	

Serial	Name	Meaning	Data type	Unit
numb				
er				
11	North speed	Combined output north	Floating-po	m/s
		speed	int type	
12	Sky speed	Combined output speed	Floating-po	m/s
			int type	
13	NSV1	Number of satellites for	Integer	А
		antenna 1		
14	NSV2	Number of satellites for	Integer	А
		antenna 2		
15	Positioning type	Postype in bestpos, see	Integer	_
		Table 12		
16	Directional type	Postype in heading, see	Integer	_
		Table 12		
17	Check code	Check code (value after	Hexadecim	_
		exclusive or of number	al	
		between \$and *)		
18	<cr><lf></lf></cr>	Fix the tail of the package	_	_

Table 7 Format of bdfpdl

Serial	Name	Meaning	Data type	Unit
numb				
er				
1	\$BDFPD	Format header	_	_
2	GPSWeek	Current Week Number	Integer	—
		Since 1980-1-6 (GMT)		
3	GPS cycles per	GPS cycles per second	Floating-poi	s
	second		nt type	
4	Yaw Angle	Yaw 0 ~ 360 degrees,	Floating-poi	Degree
		clockwise	nt type	
5	Pitch Angle	Pitch angle -90 ° ~ 90 °	Floating-poi	Degree
			nt type	
6	Roll Angle	Roll angle -180 ° ~ 180 °	Floating-poi	Degree
			nt type	
7	Latitude	Combined Output	Floating-poi	Degree
		Latitude -90 ° ~ 90 °	nt type	
8	Longitude	Combined output	Floating-poi	Degree
		longitude -180 ° ~ 180 °	nt type	
9	Height	Height of the combined	Floating-poi	m
		output	nt type	
10	East speed	Combined output east	Floating-poi	m/s
		speed	nt type	

Serial	Name	Meaning	Data type	Unit
numb				
er				
11	North speed	Combined output north	Floating-poi	m/s
		speed	nt type	
12	Sky speed	Combined output speed	Floating-poi	m/s
			nt type	
13	X-axis angular	IMU is on the right	Floating-poi	°/s
	rate		nt type	
14	Y-axis angular	Before the IMU system	Floating-poi	°/s
	rate		nt type	
15	Z-axis angular	Attach the IMU	Floating-poi	°/s
	rate		nt type	
16	X-axis	IMU is on the right	Floating-poi	m/s2
	acceleration		nt type	117.32
17	Y-axis	Before the IMU system	Floating-poi	m/s2
	acceleration		nt type	117.52
18	Z-axis	Attach the IMU	Floating-poi	m/s2
	acceleration		nt type	111/ 32
19	NSV1	Number of satellites for	Integer	А
		antenna 1		
20	NSV2	Number of satellites for	Integer	А

Serial	Name	Meaning	Data type	Unit
numb				
er				
		antenna 2		
21	Positioning type	Postype in bestpos, see	Integer	_
		Table 12		
22	Directional type	Postype in heading, see	Integer	_
		Table 12		
23	System status	0 x00: Standby		
	word	0 x10: coarse alignment		
		0 x20: fine alignment		
		0x30: integrated		
		navigation		
		0x31: Inertial navigation		
24	Check code	Check code (value after	Hexadecimal	—
		exclusive or of number		
		between \$and *)		
25	<cr><lf></lf></cr>	Fix the tail of the package		

Table 8 Format of inspvasa

Serial	Name	Meaning	Data type	Unit
numb				
er				
1	%INSPVASA	Format header	_	—
2	GPSWeek	Current Week Number	Integer	—
		Since 1980-1-6 (GMT)		
3	GPS cycles per	GPS cycles per second	Floating-poin	S
	second		t type	
4	GPSWeek	Current Week Number	Integer	_
		Since 1980-1-6 (GMT)		
5	GPS cycles per	GPS cycles per second	Floating	S
	second		point	
			number	
6	Latitude	Combined Output Latitude	Floating-poin	Degree
		-90 ° ~ 90 °	t type	
7	Longitude	Combined output	Floating-poin	Degree
		longitude -180 ° ~ 180 °	t type	
8	Height	Height of the combined	Floating-poin	m
		output	t type	
9	North speed	Combined output north	Floating-poin	m/s
		speed	t type	
10	East speed	Combined output east	Floating-poin	m/s

Serial	Name	Meaning	Data type	Unit
numb				
er				
		speed	t type	
11	Sky speed	Combined output speed	Floating-poin	m/s
			t type	
12	Roll Angle	Roll angle -180 ° ~ 180 °	Floating-poin	Degree
			t type	
13	Pitch Angle	Pitch angle -90 ° ~ 90 °	Floating-poin	Degree
			t type	
14	Yaw Angle	Yaw 0 ~ 360 degrees,	Floating-poin	Degree
		clockwise	t type	
15	INS status	See Table 11	_	_
16	Check code	Check code (number	Hexadecimal	_
		between% and * 32-bit		
		CRC check)		
17	<cr><lf></lf></cr>	Fix the tail of the package	_	_

Table 9 bdfpdb protocol description

Serial number	Number of bytes	Definition	Meaning	Data type	Remark
	1	Fromo	0xaa	—	
1	2	Frame	0x44	—	Header
	3	header	0x10	_	

Serial number	Number of bytes	Definition	Meaning	Data type	Remark
2	4	Message length	0x40	_	
3	5-8	Week of GNSS	Current Week Number Since 1980-1-6 (GMT)	unsigned int	_
4	9-16	Week second	GPS cycles per second	double	_
5	17-20	Yaw Angle	Yaw 0 ~ 360 degrees, clockwise	float	_
6	21-24	Pitch Angle	Pitch angle -90 ° ~ 90 °	float	—
7	25-28	Roll Angle	Roll angle -180 ° ~ 180 °	float	—
8	29-36	Latitude	Combined Output Latitude -90 ° ~ 90 °	double	_
9	37-44	Longitude	Combined output longitude -180 ° ~ 180 °	double	_
10	45-48	Height	Height of the combined output	float	_
11	49-52	East speed	Combined output east speed	float	_
12	53-56	North speed	Combined output north speed	float	_
13	57-60	Sky speed	Combined output speed	float	—
14	61-62	NSV1	Number of satellites for antenna 1	unsigned short	_
15	63-64	NSV2	Number of satellites for antenna 2	unsigned short	_
16	65-66	Positioning type	Postype in bestpos, see Table 13	unsigned short	_
17	67-68	Directional type	The postype in heading is shown in Table 13	unsigned short	_
18	69-72	Checksum	5-68 bytes 4-byte accumulate sum check	_	_

Table 10 Description of raw imusb protocol

Serial number	Number of bytes	Definition	Meaning	Data type	Remark
	1	Frame	0xaa	—	
1	2	header	0x44	<u> </u>	
	3	neader	0x10	<u> </u>	Header
2	4	Message length	0x3c	_	
3	5-8	Week of GNSS	Current Week Number Since 1980-1-6 (GMT)	unsigned int	—
4	9-12	Week second	GPS cycles per second	float	—
5	13-16	Yaw Angle	Yaw 0 ~ 360 degrees, clockwise	float	—
6	17-20	Pitch Angle	Pitch angle -90 ° ~ 90 °	float	_
7	21-24	Roll Angle	Roll angle -180 ° ~ 180 °	float	—
8	25-32	Latitude	Combined Output Latitude -90 ° ~ 90 °	double	_
9	33-40	Longitude	Combined output longitude -180 ° ~ 180 °	double	_
10	41-44	Height	Height of the combined output	float	_
11	45-48	East speed	Combined output east speed	float	—
12	49-52	North speed	Combined output north speed	float	_
13	53-56	Sky speed	Combined output speed	float	—
14	57-58	NSV1	Number of satellites for antenna 1	unsigned short	_
15	59-60	NSV2	Number of satellites for antenna 2	unsigned short	_
16	61-62	Positioning type	Postype in bestpos, see Table 13	unsigned short	_
17	63-64	Directional type	The postype in heading is shown in Table 13	unsigned short	_
18	65-68	Checksum	5-64 bytes 4-byte accumulate sum check	_	—

Table 11 Description of raw imusb protocol

Seri al num ber	Numb er of bytes	Definition	Meaning	Data type	Remark
1	1	Frame header	0xaa 0x44		
	3		0x13		Header
2	4	Message length	0x28	_	
3	5-6	Message ID number	0x145	_	—
4	7-8	Week of GNSS	—	unsigned short	_
5	9-12	Week second	ms	unsigned int	—
6	13-16	Week of GNSS	_	unsigned int	
7	17-24	Week second	s	double	
8	25-28	IMU status word	See Table 14	unsigned int	
9	29-32	Z-direction accelerometer output (upper)	m/s2	int	200*200* 2-31
10	33-36	-Y accelerometer output (rear)	m/s2	int	200*200* 2-31
11	37-40	X-direction accelerometer output (right)	m/s2	int	200*200* 2-31
12	41-44	Z-direction gyroscope output (upper)	°/s	int	200*720* 2-31
13	45-48	-Y-gyro output (rear)	°/s	int	200*720* 2-31
14	49-52	X-direction gyroscope output (right)	°/s	int	200*720* 2-31
15	53-56	Checksum	1-52byte32-bitCRCcheck	unsigned int	_

Table 12 INS Status Description				
INS status word Status word description				
INS_INACTIVE IMU logs are present, but the alignment routine ha				
not started; INS is inactive.				
INS_ALIGNING	INS is in alignment mode.			

Table 12 INS Status Description

INS_SOLUTION_GOOD	The INS filter is in navigation mode and the INS
	solution is good.

Tuno	Type definition	Type description	
Туре	Type definition	Type description	
numeric			
value			
0	NONE	No solution	
1	FIXEDPOS	Position has been fixed by the FIX POSITION command	
2	FIXEDHEIGHT	Position has been fixed by the FIX HEIGHT/AUTO command	
8	DOPPLER_VELOCITY	Velocity computed using instantaneous Doppler	
16	SINGLE	Single point position	
17	PSRDIFF	Pseudorange differential solution	
18	WAAS	Solution calculated using corrections from an	
		WAAS	
19	PROPAGATED	Propagated by a Kalman filter without new	
		observations	
20	OMNISTAR	OmniSTAR VBS position	
32	L1_FLOAT	Floating L1 ambiguity solution	
33	IONOFREE_FLOAT	Floating ionospheric-free ambiguity solution	
34	NARROW_FLOAT	Floating narrow-lane ambiguity solution	
48	L1_INT	Integer L1 ambiguity solution	
50	NARROW_INT	Integer narrow-lane ambiguity solution	
64	OMNISTAR_HP	OmniSTAR HP position	
65	OMNISTAR_XP	OmniSTAR XP or G2 position	
68	PPP_CONVERGING	Converging PPP solution	
69	PPP	Converged PPP solution	
70	OPERATIONAL	Solution accuracy is within UAL operational limit	
71	WARNING	Solution accuracy is outside UAL operational	
		limit but within warning limit	
72	OUT_OF_BOUNDS	Solution accuracy is outside UAL limits	

Table 13 postype description

Table 14 IMU Status Word Description

Bit	Type description	
sequence		
number		
0	X Gyro status	
1	Y Gyro status	1: normal, 0: fault
2	Z gyro status	

Bit	Type description	
sequence		
number		
3	Spare	
4	X Accelerometer Status	
5	Y Accelerometer Status	1: normal, 0: fault
6	Z Accelerometer Status	
7-31	Spare	—

4.3.2.4.332 bit CRC check calculation method

The 32-bit CRC check calculation method can be obtained by using the following C language function.

```
#define CRC32 POLYNOMIAL 0xEDB88320L
/*
Calculate a CRC value to be used by CRC calculation functions.
    _____
                                                 .____ */
unsigned long CRC32Value(int i) {
   int j;
   unsigned long ulCRC;
   ulCRC = i;
    for ( j = 8 ; j > 0; j-- ) {
        if ( ulCRC & 1 )
           ulCRC = ( ulCRC >> 1 ) ^ CRC32 POLYNOMIAL;
        else
            ulCRC \gg 1;
    }
    return ulCRC;
}
/*
Calculates the CRC-32 of a block of data all at once
ulCount - Number of bytes in the data block
ucBuffer - Data block
*/
unsigned long CalculateBlockCRC32 ( unsigned long ulCount, unsigned char
*ucBuffer ) {
   unsigned long ulTemp1;
   unsigned long ulTemp2;
   unsigned long ulCRC = 0;
   while ( ulCount-- != 0 ) {
        ulTemp1 = ( ulCRC >> 8 ) & 0x00FFFFFFL;
        ulTemp2 = CRC32Value( ((int) ulCRC ^ *ucBuffer++ ) & OxFF );
        ulCRC = ulTemp1 ^ ulTemp2;
    }
    return( ulCRC );
}
```

4.3.2.5 initial value configuration

Initial longitude and latitude configuration, configuration instructions are:

initialpos LONGITUDE LATILUDE

Where LONGITUDE and LATITUDE are configured local longitude and latitude values in degrees.

4.3.2.6 function module configuration

Functional modules with open configuration mainly include zero velocity correction and output position smoothing.

4.3.2.6.1 "Zero Velocity Trim" Configuration

The zero-velocity correction function mainly means that the integrated navigation system detects the sensitive information, and if the integrated navigation system is judged to be zero-velocity, the corresponding correction is carried out.

In the integrated navigation process of this product, the "zero velocity correction" is enabled by default. If the satellite information is invalid for a long time in the integrated navigation state, and the user wants to get the pure inertial navigation information, it is recommended to close the zero velocity correction mode.

The zero speed correction configuration instructions are as follows:

inszupt switch

The switch value is either disable or enable, where disable turns the feature off and enable turns the feature on.

4.3.2.6.2 Position Output Smoothing configuration

In order to get more smooth position information, the navigation software adds the function of position output smoothing, which makes the position noise smaller after smoothing.

In the integrated navigation process of this product, "Position Output Smoothing" is off by default. In order to facilitate the user's selection, this function can be configured. The configuration instructions are as follows:

possmoothswitch

The switch value is either disable or enable, where disable turns the feature off and enable turns the feature on.

4.3.2.7 carrier type configuration

According to different carriers installed in the integrated navigation system, the carrier type configuration is required, and different algorithm processing is carried out in the integrated navigation system according to different carrier types.

The configuration instructions are as follows:

carrier vehicle/ship/air

They are vehicle-mounted, ship-mounted and airborne in turn.

After the configuration is completed, you need to enter the save command "saveconfig", and then hard start or enter the "# reset" command. The carrier type configuration will be valid after startup. The integrated navigation system does not support current configuration and current use during use, and must be restarted.

After the carrier type is configured as the vehicle-mounted type, the integrated navigation system is required to be installed and fixed on the vehicle, and the heading of the integrated navigation system is consistent with the head direction of the vehicle, with an error of not more than 10 degrees.

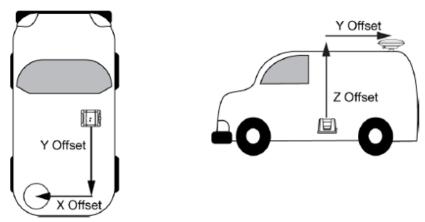
4.3.2.8 GNSS antenna mast arm configuration

According to the relative installation relationship between the antenna and the integrated navigation system, it is necessary to configure the antenna rod arm. The lever arm value between the integrated navigation system and the antenna must be accurate to millimeter (mm) during measurement, especially during RTK operation. Any lever arm measurement error will directly enter the position error output by the integrated navigation system. During installation and use, the integrated navigation system should be as close as

•MEMSGYRO •FIBER OPTICAL GYRO •QUARTZ ACCLEROMETER •INS •IMU

possible to the main antenna, especially in the horizontal position. The command is required to be completed before or during the alignment of the integrated navigation system on the stationary base and before the alignment of the integrated navigation system on the moving base. Once the configuration is complete, it needs to be saved via "saveconfig".

The configurations include a master antenna rod arm configuration and a slave antenna rod arm configuration.


The main antenna configuration instructions are as follows:

setimutoantoffsetarmX armY armZ

The slave antenna configuration instructions are as follows:

setimutoantoffset2armX armY armZ

Where armX, armY and armZ are the configured lever arm values in meters, representing the components of the vector from the integrated navigation system to the antenna phase center in the integrated navigation system carrier coordinate system, and the integrated navigation system carrier coordinate system is selected as the right front top (XYZ). For the example in Figure 5, armX and armY should be negative, and armZ should be positive.

4.3.2.9 Output Lever Arm Settings

The default value for the product output lever arm configuration is [0,0,0] (upper right front), which outputs the position and speed values at the integrated navigation system. If the position and speed of the user's test point need to be output, the output lever arm should be set according to the relative installation relationship between the test point and the integrated navigation system.

The lever arm value from the configuration of integrated navigation system to the test point must be accurate to millimeters (mm) during measurement, especially during RTK operation, any lever arm measurement error will directly enter the position error output by the integrated navigation system. The command is required to be completed before or during the alignment of the integrated navigation system on the stationary base and before the alignment of the integrated navigation system on the moving base. Once the configuration is complete, it needs to be saved via "saveconfig".

The output lever arm configuration commands are as follows:

setimutosensoroffsetarmX armY armZ

 Mangation contra Mangation contra

Where armX, armY, and armZ are the configured lever arm values, in meters, representing the components of the vector from the integrated navigation system to the test point in the integrated navigation system carrier coordinate system, and the integrated navigation system carrier coordinate system is selected as the right front top (XYZ). For the example in Figure 6, armY and armZ should be positive.

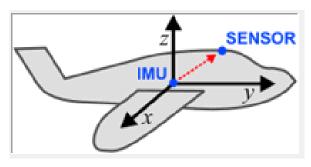


Fig. 6 Schematic diagram of output lever arm

Setting of mounting angle of 4.3.2.9

The attitude and heading information output by the product are Euler angles of the product coordinate system relative to the geographic coordinate system. The angle installation relationship between the product and the carrier coordinate system is the installation angle, and the default configuration value is [0,0,0] (pitch, heading, roll), that is, the product coordinate system and the installation carrier coordinate system coincide. If there is an installation angle when the product is installed on the carrier, and the Euler angle of the carrier coordinate system relative to the geographic coordinate system needs to be output by the product, the installation angle should be set according to the relative installation relationship between the product and the carrier.

Mounting angle configuration instructions are as follows:

vehiclebodyrotationangleX angleZ angleY

Where angleX, angleZ and angleY are the configured installation angle values, in degrees, representing the angles from the carrier coordinate system to the integrated navigation system coordinate system, in the order of pitch, course and roll.

4.3.2.10 forced rotation inertial navigation

When the integrated navigation system is in the integrated navigation state, the integrated navigation system can receive the forced rotation inertial navigation instruction and switch to the inertial navigation state. In this state, the integrated navigation system still receives the satellite navigation information for protocol transmission, but does not use the satellite navigation information to participate in the integrated navigation calculation. After receiving the effective forced rotation inertial navigation command, the integrated navigation system feeds back the "cmd OK" "through the COM1 port.

Forced-turn inertial navigation commands are as follows:

#moddgitoins

4.3.2.11 GNSS information input interface configuration

The integrated navigation system uses COM2 to receive satellite navigation information by default, and COM1 can also be configured as the input interface of satellite navigation information. When COM1 is set as the satellite navigation information input interface, COM2 is automatically changed to the configuration information input interface. The instructions for configuring COM1 as the satellite navigation information input interface are as follows:

\$SETCONFIGFPGA

The instructions for configuring COM2 as the satellite navigation information input interface are as follows:

\$SETCONFIGUART2

4.3.2.12 Configuration Input Interface Configuration

The integrated navigation system uses COM1 to receive configuration command information by default, and COM2 can also be configured as the input interface of configuration command information. When COM2 is set as the configuration command information input interface, COM1 is automatically changed to the satellite navigation information input interface.

The commands for configuring COM1 as the configuration command information input interface are as follows:

\$SETCONFIGUART2

The commands for configuring COM2 as the configuration command information input interface are as follows:

\$SETCONFIGFPGA

Trigger mode configuration of 4.3.2.13 time synchronization signal

Note: This function applies to the navigation firmware version 2.00 and the firmware version after it.

By default, the integrated navigation system uses the time synchronization signal of the falling edge to trigger. The trigger type is determined by querying the status of the "nTriggerFlag" in the configuration command " \$GPINF". If it is equal to 0, it represents the falling edge trigger; if it is equal to 1, it represents the rising edge trigger.

Configure a falling edge trigger with the following command:

\$GPFALLEDGE

Configure a rising edge trigger with the following command:

\$GPRISEDGE

4.3.3 system maintenance

4.3.3.1 firmware upgrade

When a firmware upgrade is required, proceed as follows:

Make sure that COM1 port is the configuration interface before starting;

Connect the power line and communication line, connect the COM1 port to the computer, and set the COM1 port according to the baud rate setting value of the COM1 port;

After sending the "\$GPUPD" command, change the COM1 baud rate to the 256000 bps; The serial port tool interface displays the start prompt information, and the interface displays "30 ..." 10 9 8 7 6 5 4 3 2 Before 1, send ":" (small colon, cancel the option of sending a new line) to the serial port, and the interface displays the updata flash information;

Select the firmware (generally *.bin2 file) to be upgraded through the serial port tool and send it;

After the sending is completed, the program automatically reloads and starts, enters the

start prompt information, and starts normally;

The firmware upgrade is complete.

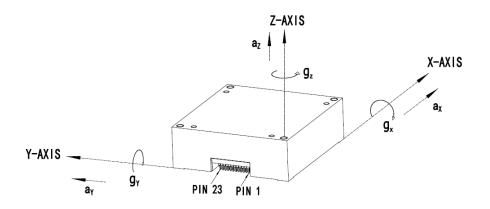
4.3.3.2 parameter upload

In general, the user does not need to upload the calibration parameters, and the configuration has been completed before leaving the factory. Under special circumstances, if the user is required to upload and maintain the parameters, the following steps shall be followed:

After the system completes the startup prompt information normally, you can query the corresponding system number through the "log bdlist"/ "log rxstatus";

Send the "# modbd" command to the integrated navigation system through the COM1 port, and upload the "*.txt" calibration parameter file through the serial port after the "cmd OK" "is returned;

After the interface returns to the calibration parameter information, send the "# saveconfig"/ "saveconfig" command to save the parameters, and then reset the system by soft and hard reset to work normally.


4.3.4 SPI Interface Instruction

During the operation of the integrated navigation system, the real-time IMU data and navigation data are loaded into the output register, and the data can be accessed through the SPI port.

Description of 4.3.4.1 data

The order of IMU data output is front, left, top, 3 gyros (g_x , g_y , g_z) and 3 accelerometers

 (a_x, a_y, a_z) is defined as shown in the figure below, and the direction of the arrow is positive.

Figure 7 IMU Coordinate Definition Diagram

The definition of navigation data output is the same as that of serial port data.

4.3.4.2 SPI read and write data

IMU data and navigation data are loaded into the output register in real time, and the data can be accessed through the SPI port. The SPI port is typically connected to a compatible port on an embedded processor, as shown in the following figure. Four SPI signals support synchronous serial data transfer. In the factory default configuration, the DIO2 pin

provides a data-ready signal. This pin goes high when new data is available in the output data register.

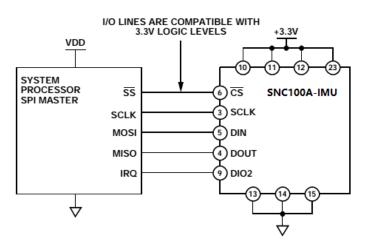
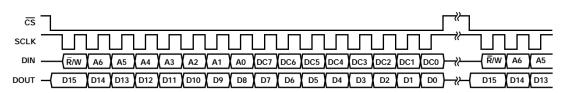


Fig. 8 Connection diagram


4.3.4.3 Generic Host Processor SPI Settings

The generic host processor SPI settings are shown in the following table.

Table 15. Generic Host Processor SPI Settings				
Processor settings	Explain			
Host	The integrated navigation system is used			
SCLK ≤ 15 MHz	Maximum serial clock ratio			
SPI Mode 3	CPOL = 1 (polar), CPHA = 1 (phase)			
MSB first mode	Bit Order			
16-bit mode	Shift register/data length			

4.3.4.4 SPI communication

If the previous command is a read request, the SPI port supports full-duplex communication, and the external processor can read DOUT and write DIN at the same time, as shown in the following figure.

Figure 9	SPI Re	ad/M/rite	Timina	Diagram
i igule a	OLINE	au/wille	riiriiriy	Diagram

The 4.3.4.5 reads data

The integrated navigation system automatically starts and activates page 0 for data register access. After accessing any other page, write 0x00 to the PAGE _ ID register (DIN = 0x8000) to activate Page 0 in preparation for subsequent data accesses. A single register read requires two 16-bit SPI cycles. In the first cycle, a read of the contents of a register is requested using the bit assignment function in the following figure; in the second cycle, the register contents are output on DOUT. The first bit of the DIN command

is 0, followed by the high or low address of the register. The last eight bits are don't care, but the SPI requires a full 16 SCLKs to receive the request. The following figure shows two consecutive register reads, one with DIN = 0x1A00 requesting the contents of the Z _ GYRO _ OUT register, and the other with DIN = 0x1800 requesting the contents of the Z _ GYRO _ LOW register.

Figure 10. Sample SPI Read Operation

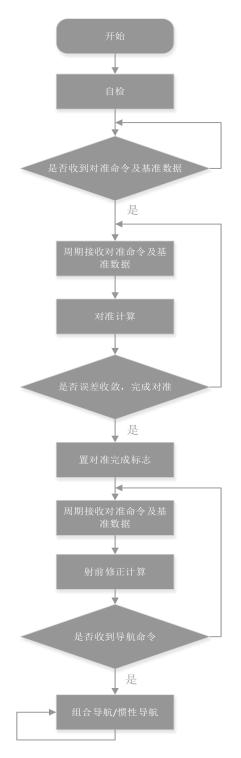
4.3.4.6 User Register Memory Map (N/A = Not Applicable)

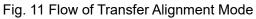
The user register memory map is shown in the following table.

			Addre		
Name	R/W	PAGE_ID	SS	Default	Register description
TEMP_OUT	R	0x00	0x0E	N/A	Temperature
X_GYRO_LOW	R	0x00	0x10	N/A	X-axis gyroscope output,
					low word
X_GYRO_OUT	R	0x00	0x12	N/A	X-axis gyroscope output,
					high word
Y_GYRO_LOW	R	0x00	0x14	N/A	Y-axis gyroscope output,
					low word
Y_GYRO_OUT	R	0x00	0x16	N/A	Y-axis gyroscope output,
			0.40		high word
Z_GYRO_LOW	R	0x00	0x18	N/A	Z-axis gyroscope output,
		0.00	0.44	N1/A	low word
Z_GYRO_OUT	R	0x00	0x1A	N/A	Z-axis gyroscope output,
		000	0.10	N1/A	high word
X_ACCL_LOW	R	0x00	0x1C	N/A	X-axis accelerometer output, low word
X ACCL OUT	R	0x00	0x1E	N/A	X-axis accelerometer
X_ACCE_001		0,00			output, high word
Y ACCL LOW	R	0x00	0x20	N/A	Y-axis accelerometer
				,, .	output, low word
Y ACCL OUT	R	0x00	0x22	N/A	Y-axis accelerometer
					output, high word
Z_ACCL_LOW	R	0x00	0x24	N/A	Z-axis accelerometer
					output, low word
Z_ACCL_OUT	R	0x00	0x26	N/A	Z-axis accelerometer
					output, high word
Reserved	N/A	0x00	0x28-	N/A	Reserved
		0,00	0x5E	-	
Yaw	R	0x00	0x60	N/A	Yaw 0 ~ 360 degrees,
					clockwise

Name	R/W	PAGE_ID	Addre ss	Default	Register description
Pitch	R	0x00	0x62	N/A	Pitch angle -90 ° ~ 90 °
Roll	R	0x00	0x64	N/A	Roll angle -180 ° ~ 180 °
Latitude_LOW	R	0x00	0x66	N/A	Combined output latitude -90 ° ~ 90 °, low word
Latitude_HIGH	R	0x00	0x68	N/A	Combined output latitude -90 ° ~ 90 °, high order word
Longitude_LOW	R	0x00	0x6A	N/A	Combined output longitude -180 ° ~ 180 °, low word
Longitude_HIG H	R	0x00	0x6C	N/A	Combined output longitude -180 ° ~ 180 °, high order word
Height	R	0x00	0x6E	N/A	Height of the combined output
East_velocity	R	0x00	0x70	N/A	Combined output east speed
North_velocity	R	0x00	0x72	N/A	Combined output north speed
Up_velocity	R	0x00	0x74	N/A	Combined output speed
Work_status	R	0x00	0x76	N/A	Integrated navigation system working state word 0 x00: Standby 0 x10: coarse alignment 0 x20: fine alignment 0 x30: Navigation
PROD_ID	R	0x00	0x7E	102	Product identification (102) output

4.3.4.7 transformation formula


Current temperature = $25 + TEMP _ OUT * 0.00565$. X-axis gyro value = $0.02 * X _ GYRO _ OUT$ Y-axis gyro value = $0.02 * Z _ GYRO _ OUT$ Z-axis gyro value = $0.02 * Z _ GYRO _ OUT$ X-axis accelerometer value = (long) (X _ ACCL _ OUT * 65536 + X _ ACCL _ LOW) * 0.00001220703125 * 0.001 Y-axis accelerometer value = (long) (Y _ ACCL _ OUT * 65536 + Y _ ACCL _ LOW) * 0.00001220703125 * 0.001 Z-axis accelerometer value = (long) (Z _ ACCL _ OUT * 65536 + Z _ ACCL _ LOW) * 0.00001220703125 * 0.001 Z-axis accelerometer value = (long) (Z _ ACCL _ OUT * 65536 + Z _ ACCL _ LOW) * 0.00001220703125 * 0.001 Z-axis accelerometer value = (long) (Z _ ACCL _ OUT * 65536 + Z _ ACCL _ LOW) * 0.00001220703125 * 0.001 Z-axis accelerometer value = (long) (Z _ ACCL _ OUT * 65536 + Z _ ACCL _ LOW) * Latitude = (long) (Latitude _ HIGH * 65536 + Latitude _ LOW) * 0.0000001 Longitude = (long) (Longitude _ HIGH * 65536 + Longitude _ LOW) * 0.0000001 Height = (short) height * 0.1 East speed = (short) East _ velocity * 0.01. North Speed = (short) North _ velocity * 0.01. Sky velocity = (short) Up _ velocity * 0.01


4.3.5 Transfer Alignment Function Description

The integrated navigation system can upload the general firmware of transfer alignment, support the working mode of transfer alignment + integrated navigation/inertial navigation, and be applied in the fields of aviation guided bombs, smart munitions, rockets, etc. When it works in the integrated navigation state, it needs to send GNSS positioning information to the integrated navigation system through COM2.

4.3.5.1 workflow

The working mode flow is shown in the figure below.

4.3.5.2 communication protocol

Communication interface: COM 1;

Baud rate: 115 200 bps;

Byte format: 8 data bits, 1stop bit, no parity bit;

Frame format: low byte first, high byte last;

Frequency: from the flight control system to the integrated navigation system, 10 Hz in the alignment and pre-launch correction stage, and no timing in other stages; Integrated

navigation system to flight control, 100Hz.

Table 17 Protocol	format from flight co	ontrol to integrated	navigation system
	Torring in orring in or	ona or to integratoa	na ngaaon oyotonn

	Byte		Data type	rated navigation		
Agreeme	sequenc		Data type			
nt	e	Data		Coefficient	Remark	
	number					
Protocol	0	0x55				
header	1	0xaa				
	•	- Chaid			0 X11: Align	
					command	
	2	Command	_	_	0 x33: Navigation	
	-	word			command	
					Rest: No command	
	3	Heading	unsigned		0 ° ~ 360 °,	
	4	angle	short	0.01°	clockwise is positive	
	5	Pitch			-90 ° ~ + 90 ° is	
	6	Angle	short	0.01°	positive	
	7				-180 ° ~ + 180 ° right	
	8	Roll Angle	short	0.01°	tilt is positive	
	9	Latitude	int	0.0000001°		
	10				The north latitude is	
	11				positive	
	12					
	13		int	0.0000001°		
Protocol	14	Longitude			East longitude is	
body	15				positive	
body	16					
	17					
	18	Height	int	0.01m	_	
	19	, U				
	20	N. (1				
	21	North	short	0.01m/s	_	
	22	speed				
	23	Sky	short	0.01m/s	—	
	24 25	speed East				
	26	speed	short	0.01m/s	—	
	20	Frame	unsigned			
	28	count	short	—		
	29-33	Spare		 		
					Accumulate and sum	
	34	Checksu	_	_	2 to 33 bytes, take	
		m			the low byte	

End of	35	0x7e		 —
agreeme nt	36	0x7e		_

Table 18 Format of integrated navigation system to flight control protocol

	Byte		Data type			
Agreem	sequenc	Data		Coeffi	Remark	
ent	е	Bata		cient	Komark	
	number					
Protocol	0	0x55	—	—	—	
header	1	0xaa	—	—		
	2	Frame count	unsigned	_	_	
	3		short			
		Inertial			0 x00: Standby 0 x20: alignment	
	4	navigation	—	—	0 x25: Good	
		status			alignment	
					0 x30: Navigation	
	5	Heading angle	unsigned	0.01°	0 ° ~ 360 °, clockwise	
	6		short		is positive	
	7	Pitch Angle	short	0.01°	-90 ° ~ + 90 ° is	
	8				positive	
	9 10	Roll Angle	short	0.01°	-180 ° ~ + 180 ° right	
					tilt is positive	
	11	Latitude	int			
	12			0.0000 001°	The north latitude is positive	
Protocol	13					
body	14					
	15		int	0.0000 001°	East longitude is positive	
	16	Longitude				
	17					
	18					
	19	-				
	20	Height	int	0.01m	_	
	21	-				
	22					
	23 24	North speed	short	0.01m/	—	
	24			s 0.01m/		
	25	Sky speed	short	s.0111/	—	
	20			0.01m/		
	28	East speed	short	s	—	
	29	Angular velocity	float	_	°/s	
		, angular voloolty	nout		,.	

	Byte		Data type			
Agreem	sequenc		- and the	Coeffi		
ent	e	Data		cient	Remark	
	number					
	30	in Y direction				
	31	(front)				
	32					
	33					
	34	Angular velocity				
	35	in Z direction	float	—	°/s	
	36	(upper)				
	37					
	38	Angular velocity				
	39	in X direction	float	—	°/s	
	40	(right)				
	41					
	42	Y-direction				
	43	acceleration	float	_	m/s2	
	44	(front)				
	45			_		
	46	Z-direction				
	47	acceleration	float		m/s2	
	48	(upper)				
	49					
	50	X-direction		_		
	51	acceleration	float		m/s2	
	52	(right)				
	53					
	54			0.0000	The north latitude is	
	55	Wei Dao latitude	int	001°	positive	
	56				F	
	57					
	58	Wei Dao		0.0000	East longitude is	
	59	longitude	int	0.0000 001°	positive	
	60					
	61					
	62	Height of guard				
	63	guide	int	0.01m	—	
	64	94140				
	65			0.01m/		
	66	Wei Dao Beisu	short	s.om/	—	
	67			0.01m/		
	68	Wei Dao Tian Su	short		—	
	00			S		

Agreem ent	Byte sequenc e number	Data	Data type	Coeffi cient	Remark	
	69	Wei Dao	short	0.01m/		
	70	Dongsu	31011	s		
	71	PDOP	char	0.1		
	72	Guidance		_	'A': Valid	
	12	location status	_		'V': Invalid	
	73-79	Spare	—	—	—	
80		Checksum	2		Accumulate and sum 2 to 79 bytes, take the low byte	
End of	81	0x7e	_		_	
agreeme nt	82	0x7e	_	_	_	

4.4 Coordinate System Definition

The inertial coordinate system is defined as right, front, up, (X, Y, Z), and the direction of the arrow is positive. The coordinate system is defined as shown in the following figure.

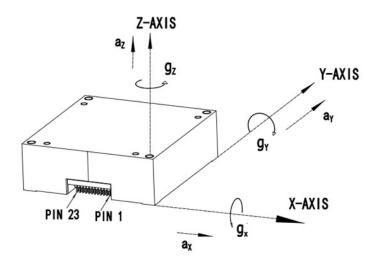


Figure 12 Inertial Navigation Coordinate System Definition

5. Precautions

The main considerations are as follows:

A) The power-on and power-off time interval of the integrated navigation system shall not be less than 30 s, otherwise it is easy to cause damage to the inertial devices;

B) shall be handled with care during handling, installation and use to avoid collision, falling and impact;

The output and baud rate configuration of the C) satellite board shall be as described in

the appendix.

6. Appendix

Input configuration of the satellite receiver of the 6.1

The integrated navigation system receives the external satellite navigation information through the COM1 or COM2 port. The output configuration protocol of the external satellite receiver is as follows (the baud rate of the output interface of the external satellite receiver shall be consistent with the setting of the satellite navigation information input interface).

Nova tel-like card: log comX bestposb ontime 0.2 log comX headingb onchanged/ontime 0.2 log comX bestvelb ontime 0.2 log comX psrdopb ontime 1 Log comX timeb ontime 0.2 (Note: Not required) Log comX rangecmpb ontime 1 (Note: for post-processing, this command is invalid without the original data board) saveconfig General purpose board: log comX gprmc ontime 0.2 log comX gpga ontime 0.2 log comX gpgsa ontime 1 log comX gpds ontime 1 log comX gphdt onchanged saveconfig

Seri al nu mb er	Versi on	Change the date	Before the change	After the change	Reason for the change	Chan ged by
1	V1.00	20200331			New establish ment	СНВ
2	V1.01	20200402		Add Transfer Alignment Protocol		СНВ
3	V1.02	20200416		Change the gpzda input period to 0.2 second	Perfect	СНВ

7. Update records

			The 1、 determines the		
4	V1.03	20200423	communication baud	Perfect	СНВ
			rate of the bomb mode		
			as the 115200 bps		
			2、 to modify the		
			configuration of health		
			guidance		
5	V1.04	20200527	Add protocol checksum	Perfect	СНВ
			description		
6	V1.05	20200804	Error modifying	Perfect	СНВ
			rawimusb protocol		
7	V1.06	20201124	Added description of PPS	Perfect	СНВ
			trigger mode		
8	V1.07	20210202	Add the precision	Perfect	СНВ
			description of the		
			low-profile product		
9	V1.08	20220402	Add time synchronization	Perfect	INS
			signal configuration,		
			update bdfpdb protocol		
10	V1.09	20221121	Update of bdfpdb	Perfect	INS
			protocol message length		
11	V1.10	20230403	Add bdfpdb1 protocol	Perfect	INS
			message		