BS-IC30C-M-D6EC Inertial Measurement Unit Instructions for use

February, 2023

1. Product overview

The BS-IC30C-M-D6EC is an inertial measurement unit (IMU) based on micromachining technology (MEMS), with built-in high-performance MEMS gyroscope and MEMS accelerometer, outputting 3 angular velocities and 3 accelerations.

BS-IC30C-M-D6EC features high reliability and strong environmental adaptability. By matching different software, the product can be widely used in tactical and industrial UAV, smart ammunition, seeker and other fields.

2. Product features

- 1) Three-axis digital gyroscope:
 - a) $\pm 500^{\circ}$ /s dynamic measuring range;
 - b) Zero-bias stability: 3 °/H (GJB, 10s), 0.3 °/H (ALLAN);
- 2) Triaxial digital accelerometer:
 - a) ± 16 G dynamic measuring range;
 - b) Zero-bias stability: 0.1mg (GJB, 10S), 0.02mg (ALLAN);
- 3) High reliability: MTBF > 20000h;
- 4) Guaranteed accuracy within the full temperature range (-40 °C ~ 80 °C): built-in high-performance temperature calibration and compensation algorithm;
- 5) Suitable for working under strong vibration conditions;
- 6) Interface 1-way RS422
- 7) Compatible with STIM300

3. Field of application

- 1) Tactical and Industrial UAV
- 2) Smart Munitions
- 3) Seeker

4. Product indicators

Table 1 Product performance index

Parameter		Test conditions	Design accuracy	Unit
	Dynamic measuring range	_	±500	°/S
	Diag stability	Allan variance (500 °/s range, normal temperature)	0.3	°/h
	Bias stability	10 s average (-40 °C ~ + 80 °C, constant temperature),	3.0	°/h
Peg-top		Zero-bias range	0.1	°/s
		Zero-bias variation over full temperature range		°/s
	Bias	Start repeatability	0.005	°/s
	Dias	Ffect of linear acceleration on bias	0.002	°/s/g
		Influence of vibration on Bias, change before and after vibration	0.002	°/s/g
		Influence of vibration on Bias,	0.001	°/s/g

Parameter		Test conditions	Design accuracy	Unit	
		change before and during vibration			
		Scale factor accuracy	0.1	%	
	Scale factor	Scale factor nonlinearity	0.01	%FS	
	Angular	-	0.06	°/√hr	
	random walk		• • • •		
	Bandwidth	-	200	Hz	
	Dynamic				
	measuring	-	16	g	
	range				
	D 1	Allan variance (16g range, normal temperature)	0.02	mg	
	Bias stability	10 s average (-40 °C ~ + 80 °C,	0.02		
		constant temperature)	0.03	mg	
Accelero		Zero-bias range	1	mg	
meter	D.	Zero-bias variation over full	1		
	Bias	temperature range	1	mg	
		Start repeatability	0.2	mg	
	Scale factor	Scale factor accuracy	0.3	%	
		Scale factor nonlinearity	0.02	%FS	
	Speed random walk	-	0.08	m/s/√hr	
	Bandwidth		200	Hz	
Commun	1-way SR422	Baud rate	460.8	MHz	
ication	Sampling	Daud Tate	+00.0	IVIIIZ	
interface	frequency	UART	1000	Hz	
Interface	Voltage		5	V	
Electrical	Power		5	•	
characteri	consumption	-	1.5	W	
stics	Ripple	P-P	150	mV	
Structural	Size	-	38.6×44.6×21.5	mm	
characteri stics	Weight	-	65±2	g	
5105	Operating				
	temperature	-	-40~80	°C	
Use	Storage				
environm ent	temperature	-	-45~85	°C	
			20~2000Hz,		
	Vibration	-	6.06g		
	Impact	_	6000g, 0.5ms		
	MTBF	_	20000	h	
Reliabilit	Continuous				
У	Commuous		120	h	

5. Electrical interface

The electrical connector of BS-IC30C-M-D6EC product is J30J-15 TJL, and the specific contact definition and allocation are shown in the following table:

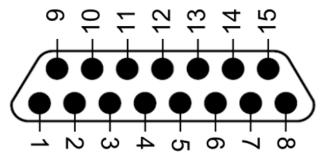


Figure 1 Connector node configuration

Stitch number	Name	Туре	Remark
1	TxD-	Output	RS422
2	RxD-	Input	RS422
3	TST_1	Output	
4	TOV_1	Output	
5	RST	Input	
6	GND	Input	
7	Spare		
8	VCC_5V	Power source	+5v
9	TxD+	Output	RS422
10	RxD+	Input	RS422
11	ExtTrig	Input	Synchronous input 5V
12	GND	Input	
13	GND	Input	
14	Spare		
15	GND	Power ground	

 Table 2 3 J0J-15 TJL Connector Contact Definition Allocation Table

6. Fabric interface



Figure 2Schematic diagram of structure outline

7. Instructions for use

7.1. UART reads and writes data

7.1.1. Configurable parameters

The communication protocol, baud rate, sampling frequency and output frequency of the product can be modified by sending user instructions through the upper computer. The configurable parameters are shown in the following table:

Parameter	Configuration	Explain
	Gyro (Frame ID = $0x90$)	
	Gyro + Add Table (Frame $ID = 0x91$)	
Data frame	Gyro + Temperature (Frame ID =	
Data Irame	0x94)	
	Gyro + plus meter + temperature	
	(frame ID = 0 xA5)	
Data update rate	1000Hz	Switch the data update rate by sending

 Table 3Configurable parameter table

	500Hz	a command. Refer to Table 11 for
	200Hz	switching.
	100Hz	
	50Hz	
	Range: 500 DPS	
Peg-top	ODR: 1000Hz	Angular rate (°/s)
	Bandwidth: 200Hz	
	Range: 16g/80g	
Add a table	ODR: 1000Hz	Acceleration (G)
	Bandwidth: 200Hz	
	Angular velocity, acceleration,	
DATAGRAM	temperature (°C)	
DATAGARM	NPNE	
TERMINATION	<cr><lf></lf></cr>	
	921600 bits/s	Configure different baud rates
	460800 bits/s	according to the data frame length of
RS422 baud rate	374400 bits/s	different communication protocols.
KS422 baud rate	256000 bits/s	Refer to Table 4 for the maximum baud
	230400 bits/s	rate. Refer to Table 11 for the user
		instruction of switching baud rate.
	None (no check)	
RS422 check digit	Odd (odd parity)	
	Even (even check)	
	1	
RS422 data stop bit	1.5	
	2	

7.1.2. Communication interface

Standard RS-422 serial communication is used. The transmission baud rate, data update rate and transmission baud rate can be modified through the user command sent by the upper computer. The following table shows the maximum data update rate corresponding to different data frame contents.

When there is no special configuration, the default state of the product is: baud rate 921 600bps, 8 data bits, 1stop bit, no check bit, data frame ID is 0 xA5, and update rate is 1000Hz.

Enune contont	Frame	230400 bit/s	256000 bit/s	374400 bit/s	460800 bit/s	921600 bit/s
Frame content	length					
Angular velocity	18	1000Hz	1000Hz	1000Hz	1000Hz	1000Hz
Angular velocity +	29	500Hz	500Hz	1000Hz	1000Hz	1000Hz
acceleration	28					

Table 4 Maximum data update ratio

Angular velocity +	25	500Hz	1000Hz	1000Hz	1000Hz	1000Hz	
temperature	23						
Angular velocity +		500Hz	500Hz	500Hz	1000Hz	1000Hz	
acceleration +	42						
temperature							

Note:

- 1. Frame length does not include $\langle CR \rangle \langle LF \rangle$
- 2. 10 bits/byte(=1 start bit,8 data bits,no parity bit,1 stop bit)

7.1.3. Protocol format

Different communication protocol formats can be changed by configuring different frame IDs. The specific communication protocol formats are shown in the following table:

	Table 5 Angular Velocity + acceleration + temperature (frame iD = 0xA5) protocor format							
Serial numb er	Parameter name	Valid range	Byte	Scale	Remark			
1	Frame header	0xA5	1		Packet header			
2	X-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.			
3	Y-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.			
4	Z-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.			
5	Gyro status		1		All zeros are normal. See Table 10 for specific definitions.			
6	X-axis acceleration	[-16, 16]	3	2 ⁻¹⁹ 2 ⁻¹⁶	Unit: G, first high and then low, the most significant bit of the first byte is the sign bit. See Note 2 for the specific algorithm.			
7		[-16, 16]		2 ⁻¹⁹	Unit: G, first high and then low, the most			
	Y-axis acceleration	[-80, 80]	3	2 ⁻¹⁶	significant bit of the first byte is the sign bit. See Note 2 for the specific algorithm.			
8		[-16, 16]		2 ⁻¹⁹	Unit: G, first high and then low, the most			
	Z-axis acceleration	[-80, 80]	3	2 ⁻¹⁶	significant bit of the first byte is the sign bit. See Note 2 for the specific algorithm.			

 Table 5'Angular Velocity + acceleration + temperature (frame ID = 0xA5) 'protocol format

9	Add table status		1		All zeros are normal. See Table 10 for specific definitions.
10					Unit: °C, from high to low, the most
10	X-axis gyro	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
	temperature	[-+0; +05]	2	2	bit. See Note 3 for the specific algorithm.
11					Unit: °C, from high to low, the most
11	Y-axis gyro	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
	temperature	[-40, +83]	Δ	Ζ.	
12					bit. See Note 3 for the specific algorithm.
12	Temperature of		2	2-8	Unit: °C, from high to low, the most
	Z-axis gyroscope	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
					bit. See Note 3 for the specific algorithm.
13	Gyro Thermometer		1		All zeros are normal. See Table 10 for
	Status				specific definitions.
14	X-axis plus surface				Unit: °C, from high to low, the most
	temperature	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
	temperature				bit. See Note 3 for the specific algorithm.
15	Y-axis plus surface				Unit: °C, from high to low, the most
	-	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
	temperature				bit. See Note 3 for the specific algorithm.
16					Unit: °C, from high to low, the most
	Z-axis plus surface	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
	temperature				bit. See Note 3 for the specific algorithm.
17	Add thermometer		_		All zeros are normal. See Table 10 for
	status		1		specific definitions.
18	Frame counter	[0, 255]	1	1	0-255 continuous count
19					Unit: us, first high and then low, the most
	Delay		2		significant bit of the first byte is the sign
	-				bit. See Note 4 for the specific algorithm.
20	CRC32		4		CRC32 verification, see instruction 5

Table 6 Angular velocity (frame ID = 0x90) 'protocol format

		_			
Serial numb	Parameter name	Valid range	Byte	Scale	Remark
er	i didineter name	vana range	Dyte	Seule	Remark
1	Frame header	0x90	1		Packet header
2	X-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign
	-				bit. See Note 1 for the specific algorithm.

3	Y-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
4	Z-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
5	Gyro status		1		All zeros are normal. See Table 10 for specific definitions.
6	Frame counter	[0, 255]	1	1	0-255 continuous count
7	Delay		2		Unit: us, first high and then low, the most significant bit of the first byte is the sign bit. See Note 4 for the specific algorithm.
8	CRC32		4		CRC32 verification, see instruction 5

 Table 7Angular Velocity + Acceleration (Frame ID = 0x91) 'protocol format

Serial numb er	Parameter name	Valid range	Byte	Scale	Remark
1	Frame header	0x91	1		Packet header
2	X-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
3	Y-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
4	Z-axis angular velocity	[-500, 500]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
5	Gyro status		1		All zeros are normal. See Table 10 for specific definitions.
6		[-16, 16]		2 ⁻¹⁹	Unit: G, first high and then low, the most
	X-axis acceleration	[-80, 80]	3	2 ⁻¹⁶	significant bit of the first byte is the sign bit. See Note 2 for the specific algorithm.
7		[-16, 16]		2 ⁻¹⁹	Unit: G, first high and then low, the most
	Y-axis acceleration	[-80, 80]	3	2 ⁻¹⁶	significant bit of the first byte is the sign bit. See Note 2 for the specific algorithm.
8		[-16, 16]		2 ⁻¹⁹	Unit: G, first high and then low, the most
	Z-axis acceleration	[-80, 80]	3	2 ⁻¹⁶	significant bit of the first byte is the sign bit. See Note 2 for the specific algorithm.

9	Add table status		1		All zeros are normal. See Table 10 for
	Add table status		1		specific definitions.
10	Frame counter	[0, 255]	1	1	0-255 continuous count
11					Unit: us, first high and then low, the most
	Delay		2		significant bit of the first byte is the sign
					bit. See Note 4 for the specific algorithm.
12	CRC32		4		CRC32 verification, see instruction 5

Table 8Angular Velocity + Temperature (Frame ID = 0x94) 'protocol format

			_		
Serial numb er	Parameter name	Valid range	Byte	Scale	Remark
1	Frame header	0x94	1		Packet header
2					Unit: (/s, from high to low, the most
	X-axis angular	[-500, 500]	3	2^{-14}	significant bit of the first byte is the sign
	velocity	[-300, 300]	5	2	bit. See Note 1 for the specific
					algorithm.
3					Unit: (/s, from high to low, the most
	Y-axis angular	[-500, 500]	3	2 ⁻¹⁴	significant bit of the first byte is the sign
	velocity	[-500, 500]	5	2	bit. See Note 1 for the specific
					algorithm.
4					Unit: (/s, from high to low, the most
	Z-axis angular	[-500, 500]	3	2 ⁻¹⁴	significant bit of the first byte is the sign
	velocity	[-500, 500]	5	2	bit. See Note 1 for the specific
					algorithm.
5	Gyro status		1		All zeros are normal. See Table 10 for
	Gylo status		1		specific definitions.
6					Unit: °C, from high to low, the most
	X-axis gyro	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
	temperature	[-+0, +85]	2	2	bit. See Note 3 for the specific
					algorithm.
7					Unit: °C, from high to low, the most
	Y-axis gyro	[-40, +85]	2	2 ⁻⁸	significant bit of the first byte is the sign
	temperature	[-40, +83]	2	Z	bit. See Note 3 for the specific
					algorithm.
8					Unit: °C, from high to low, the most
	Temperature of	[40 + 95]	2	2 ⁻⁸	significant bit of the first byte is the sign
	Z-axis gyroscope	[-40, +85]	2	2 0	bit. See Note 3 for the specific
					algorithm.

9	Gyro Thermometer Status		1		All zeros are normal. See Table 10 for specific definitions.
10	Frame counter	[0, 255]	1	1	0-255 continuous count
11	Delay		2		Unit: us, first high and then low, the most significant bit of the first byte is the sign bit. See Note 4 for the specific algorithm.
12	CRC32		4		CRC32 verification, see instruction 5

Explain

1) Gyro angular velocity output
$$[^{\circ}/s] = \frac{AR_1 \cdot 2^{1\circ} + AR_2 \cdot 2^{\circ} + AR_3}{2^{14}}$$
, the data bit format is shown in

Figure 3;

Among AR_1 Outputting the high eight bits of the three bytes for the angular velocity of each axis of the gyroscope;

 AR_2 Outputting the middle eight bits of the three bytes for the angular velocity of each axis of the gyroscope;

 AR_3 Outputs the lower eight bits of the three bytes for the angular velocity of each axis of the

gyro.

-				AR	1 —				•			- AR	2			-	•			AR3				
Bit	t 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2	2°	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2-2	2 ⁻³	24	2-5	2-6	2-7	2-8	2.6	2-10	2-11	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴

Figure 3Convert gyro angular velocity output to [°/s]

2) Acceleration speed output [G] = $\frac{AR_1 \cdot 2^{16} + AR_2 \cdot 2^8 + AR_3}{2^x};$

Among AR_1 Outputs the upper eight bits of the three bytes for the angular velocity of each axis of the accelerometer;

 AR_2 Outputs the middle eight bits of the three bytes for the angular velocity of each axis of the accelerometer;

 AR_3 Outputs the lower eight bits of the three bytes for the angular velocity of each axis of the accelerometer.

X is the scale index of the addition table, and the addition tables of 16 G and 80 G correspond to X of 18 and 16.

3) Temperature output [°C] = $\frac{T_1 \cdot 2^8 + T_2}{2^8}$ The data bit format is shown in Figure 4.

Among T_1 Outputs the upper eight bits of the two bytes for each axis temperature;

 T_2 Outputs the lower eight bits of the two bytes for each axis temperature.

•			– T ₁					•			- T ₂				
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2º	21	2'2	2.3	24	2°5	2.6	2.7	2*8

Figure 4Convert temperature output to [°C]

4) Delay time output [us] = $T_1 \cdot 2^8 + T_2$

Where, T₁ is the high eight bits in the two bytes of the delay time output;

T₂outputs the lower eight bits of the two bytes for the delay time.

5) CRC check method

CRC checks all bytes from the data frame header to the check bit, using the standard CRC-32 polynomial:

 $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$ seed = 0xFFFFFFF

The number of virtual bytes added for the CRC calculation is shown in the following table:

Serial numb	Frame content	Frame ID	Number of virtual bytes
er			
1	Angular velocity	0x90	2
2	Angular velocity + acceleration	0x91	0
3	Angular velocity + temperature	0x94	3
4	Angular velocity + acceleration +	0xA5	2
	temperature		

Table 9Number of virtual bytes added for CRC calculation

7.1.4. Self-check function and real-time output function of working status

The product has the functions of self-checking and real-time output of working status. The data frame contains a byte indicating the status, and the real-time output of product working status information begins after the power-on start is completed. The status bits are defined in the table.

Bit	Definition
7	0 = normal, $1 = $ system-wide abnormal

6	0 = normal, $1 = $ starting
5	0 = normal, 1 = abnormal external environment
4	0 = normal, 1 = three axes out of service
4	condition
3	0 = normal, $1 = $ error in three-axis output
2	0 = OK, $1 = Z$ axis out of use condition or error
1	0 = OK, $1 = Y$ axis out of use condition or error
0	0 = OK, $1 = X$ axis out of use condition or error

7.1.5. Configuration commands

The upper computer sends different user commands to switch the output baud rate and data update rate of the product, as shown in the following table:

Serial	User command	Explain	Remark
number			
1	\$GPENB	Enable UART power-on automatic output	
2	\$GPDIS	Close UART power-on automatic output	
3	\$GPSER	View serial number and configuration information	
4	\$GPCOM1	Configure the output baud rate as 230400 bit/s	
5	\$GPCOM2	Configure the output baud rate as 256000 bit/s	
6	\$GPCOM3	Configure the output baud rate as 374400 bit/s	
7	\$GPCOM4	Configure the output baud rate as 460800 bit/s	
8	\$GPCOM9	Configure the output baud rate as 921600 bit/s	
9	\$GPRATIO 1	Data update rate is configured as 1000Hz	
10	\$GPRATIO 2	Data update rate is configured as 500Hz	
11	\$GPRATIO 5	Data update rate is configured as 200Hz	
12	\$GPRATIO 10	Data update rate is configured as 100Hz	
13	\$GPRATIO 20	Data update rate is configured as 50Hz	
14	\$SETTCP 1	Content of switching communication protocol frame: gyro (frame ID = $0x90$)	
15	\$SETTCP 2	Content of switching communication protocol frame: gyro + table addition (frame $ID = 0x91$)	
16	\$SETTCP 3	Content of switching communication protocol frame: gyro + temperature (frame $ID = 0x94$)	
17	\$SETTCP 4	Content of switching communication protocol frame: gyro + meter + temperature (frame ID = 0xA5)	
18	\$SETRANGE 1	The range of the switchover meter is 16g.	
19	\$SETRANGE 2	Switchover plus meter range is 80 G	

Table 11 Configure user directives