

This instruction manual is the main basis for the operation of the BS-IC24WT-M-D6EC multi-degree of freedom inertial measurement unit.

This instruction manual is mainly based on the "Multi-degree of freedom inertial measurement unit technical agreement" and "Inertial measurement unit and three-axis gyro combination technical conditions".

1 Product functions and related technical parameters

1.1 Composition and function

The BS-IC24WT-M-D6EC multi-degree-of-freedom inertial measurement unit is a complete inertial system with a built-in three-axis gyroscope, a three-axis accelerometer, a three-axis magnetometer and a pressure sensor for measuring the three-axis angle of the carrier parameters such as rate, acceleration, three-axis magnetic field, air pressure, etc., output data after error compensation (including temperature compensation, installation misalignment angle compensation, nonlinear compensation, etc.) according to the communication protocol through SPI or URAT.

Table 1-1 Technical parameters

		parameter	Test Conditions	Minimum value	Typical value	Maximum	unit	
		Dynamic measuring range	Configurable (maximum ± 1000)	±300	±450	±1000	°/S	
		Zero bias instability	Allan variance, bett	er	5		°/h	
		Zero bias stability	1s smooth, rms, bett	ter	30		°/h	
	Gyro	Zero bias over the full temperature range	-40 °C ~ 85 °C, 10s smooth, rms		0.03		°/S	
		Random walk	16		0.26		°/√h	
		Zero bias repeatability	16		100		°/h	
		Output noise	No filtering, rms		0.135		°/S	
		Scale factor repeatability	16		0.1		%	
		Scale factor nonlinearity	FS=450 °/s		0.01		%FS	
			BS	-IC24WT-M-	D6EC	EX2.900.0)63SM	
mar	k Cha	unge order	Signature,	Total 22 Pa	age 2			

1.2 The main technical parameters

		parameter	Test Conditions	Minimum value	Typical value	Maximum	unit
		Bandwidth (-3dB)			330		Hz
	-	Cross coupling			0.1		%
		Dynamic measuring range	Configurable (maximum ± 40)	±18	±20	±40	g
		Zero bias stability	Allan variance		0.07		mg
		Zero bias over the full temperature range	-40 °C ~ 85 °C, 10s smooth, rms		5		mg
A	Acce	Random walk	16		0.029		m/s/√h
n l	iero nete	Zero bias repeatability	16		16		mg
	r	Output noise	No filtering, rms		1		mg
	-	Scale factor repeatability	16		0.1		%
	-	Scale factor nonlinearity	FS=10g		0.1		%FS
	-	Bandwidth (-3dB)			330		Hz
	Ī	Cross coupling			0.1		%
N	Mag	Dynamic measuring range			±2.5		gauss
n n	neto nete	Sensitivity			0.1		mgauss/LS B
	r	Nonlinearity			0.5		%FS
		Pressure range		300		1100	mbar
E	Baro	Sensitivity			6.1×10^{-7}		mbar/LSB
n	nete	Total error			4.5		mbar
	r	Relative error			2.5		mbar
		Nonlinearity			0.1		%FS
C	Com	1 way spi	Input clock frequency			15	MHz
n c I:	muni catio n 1 way uart Inter		Baud rate	9.6	614.4	921.6	kbps
	Elect	Voltage	DC		3.3 (or 5) ± 10%		V
E r	iou.					-	

	parameter	Test Conditions	Minimum value	Typical value	Maximum	unit
istics	Ripple	P-P			100	mV
	weight			48±2		g
TT	Operating temperature	Scalable	-40		105	°C
Use envir	storage temperature		-55		110	°C
onm ent	vibration			10~2000Hz, 6.06g		
	Shock			5000g, 0.1ms		

2 Structural features and electrical connections

The outline of BS-IC24WT-M-D6EC multi-degree of freedom inertial measurement unit is shown in Figure 2-1.

Figure 2-1 Product outline drawing

In the picture, "BS-IC24WT-M-D6EC" is the product code, and "D0xxxxxx" is the product number.

The product is installed through 4 Φ2.4 through holes, and 4 M2 screws (plus elastic pads and flat pads) are used for installation. When the connector is installed, the plug should be connected to the socket. A BIs the installation datum.

It is recommended that the flatness of the mounting surface opposite to the reference surface is not greater than 0.02mm, the perpendicularity is not greater than

				BS-IC24WT-M-D6EC	EX2.900.063SM
mark	Change	order	Signature,	Total 22 Page 4	

0.04mm, and the surface roughness is not greater than 0.8 μ m.

The connector type of the product and the external connection is FTMH-112-02-H-DH, and the docking connector of the product is Samtec P / N CLM-112-02-GDA. For the contact configuration diagram of the product, see 2-, 2 and the contact definition table 2-1.

Figure 2-2 Product contact configuration diagram

Pin number	name	Types of	description			
10 11 12	VDD	power				
10, 11, 12	VDD	supply				
12 14 15	CND	power				
13, 14, 13	GND	supply				
7	DIO1	input				
1	DIOT	Output				
0	DIO2	input				
9	DIO2	Output				
1	DIO	input	Universal IO, configurable			
1	DIO3	Output				
2	DIO4	input				
2	DIO4	Output				
3		input				
3	SPI-CLK	Output				
4	SPI-MISO	input				
4		Output	CDL alasses and a			
E		input	SPI slave mode			
3	SPI-MOSI	Output				
(input				
0	5P1-/C5	Output				
19	UART-TXD	Output	UART, baud rate can be configured, the			
21	UART-RXD	Input	default is 614400bps			
18	CAN-T	Output				
	CAN-R	Input	CAN protocol, TTL (+ 3.3v) level			

BS-IC24WT-M-D6EC

22

Page

5

Total

mark

Change

order

Signature,

EX2.900.063SM

Table 2-1 Product contact allocation

8	RST	Input	Reset
23	VDDRTC	power supply	
other	NC	spare	Factory reserved

3 Spatial coordinate system

3.1 Right-hand rule principle one

The product contains three axial spatial coordinate systems, namely X, Y and Z, as shown in Figure 3-1.

Figure 3-1 Product space coordinate system

The installation of the product must match the axis of the coordinate system, otherwise the measured angular velocity data is inaccurate. Following the "Right Hand Rule 1", you can quickly assign and determine the axis of the coordinate system. Extend your right hand and spread your thumb and index finger With the middle finger, the direction of the thumb is the X axis, the direction of the index finger is the Y axis, and the direction of the middle finger is the Z axis, as shown in Figure 3-2.

Figure 3-2 Right-hand rule principle one

3.2 Right-hand rule principle two

The three-degree of freedom gyroscope in the inertial group can measure the angular velocity in three directions. Following the 'right hand rule principle two', you can quickly determine the angular velocity direction of the axis of rotation of the coordinate axis. The direction is the axial direction, and the direction in which the other

BS-IC24WT-M-D6ECEX2.900.063SM

Change order Signature,

mark

Total 22 Page 6

four fingers are bent is the direction of the angular velocity of the axial rotation of the thumb, as shown in Figure 3-3.

Figure 3-3 Right-hand rule principle two

4 Communication interface

4.1 SPI communication

The IMU communication uses a 4-wire SPI standard interface, the product's internal data refresh frequency is up to 2.4KHz, and the communication baud rate is up to 15Mbps.

4.1.1 Timing specifications

mark

Change

order

Signature,

Unless otherwise stated, $TC = 25 \circ c$, VDD = 3.3 v.

Normal mode Explanation parameter unit Minimum Typical Maximum value value 15 MHz Serial clock 0.01 f_{SCLK} Stall period 20 tSTALL μs between data Serial clock low 31 ns t_{CLS} period Serial clock high 31 t_{CHS} ns period Chip select 32 t_{CS} to ns clock edge DOUT valid time 10 t_{DAV} ns after SCLK edge DIN settling time 2 t_{DSU} ns before the rising edge of SCLK DIN hold time 2 t_{DHD} ns after rising edge of SCLK DOUT rise / fall 3 8 t_{DR}, t_{DF} ns time, _load 100 pF CS set to valid 0 11 t_{DSOE} ns data output BS-IC24WT-M-D6EC EX2.900.063SM

Total

22

Page

7

Table 4-1 Product timing requirements

Y_MAGN_OUT	R	0x00	0x2A	N/A	Y axis magnetometer output, high word	
Z_MAGN_OUT	R	R 0x00 0x2		N/A	Z axis magnetometer output, high word	
BAROM_LOW	R	0x00	0x2E	N/A	Barometer output, low word	
BAROM_OUT	R	0x00	0x30	N/A	Barometer output, high word	

4.1.3 SPI communication and configuration

A single register read operation requires two 16-bit SPI cycles. In the first cycle, use the bit allocation function in Figure 4-3 to request to read the contents of a register; in the second cycle, the register content is output through DOUT. The first bit of the DIN command is 0, and then the high or low address of the register. The last 8 bits are irrelevant bits, but the SPI requires a full 16 SCLK to receive the request. Figure 5 shows two consecutive register read operations, first DIN = 0x1A00, request the contents of the Z_GYRO_OUT register, then DIN = 0x1800, request the contents of the Z_GYRO_LOW register

Figure 4-3 SPI read operation example

4.2 UART communication

4.2.1 Data communication protocol

The serial communication protocol is 1 start bit, 8 data bits, 1 stop bit, no parity, baud rate: selectable between $9600 \sim 614400$ bps (default 614400).

4.2.2 Data frame composition format

The data frame format specified in this article is as follows.

Table 4-3 Common format of data frame

Frame header	Command	Data length	Data content	check
	word			
0x5A,0x5A	1 byte	1 byte	N bytes	1 byte

Command word: 1 byte, range $0x00 \sim 0xFF$;

					BS-IC24WT-M-D6EC	EX2.900.063SM
	mark	Change	order	Signature,	Total 22 Page 9	

Data length: 1 byte, length of data content, range $0 \sim 250$;

Data content: The data content is valid data in the instruction, and the length is

specified by the data length;

XOR checkout: XOR sum of all bytes of frame header, command word, data length, data content.

4.2.3 Data instructions

4.2.3.1 Get data command (1-400Hz)

This command is a response type command, which is sent to the product by the host computer. After the product is correctly received, the data is returned. The commands are shown in Table 4-4.

Data Frame	Byte number	data	unit	type of data	Remarks
	0	0x5a			
Frame neader	1	0x5a			
Command word	2	0x02			
Data length	3	0x00			
Data content		no			
End of frame	4	Checksum			XOR of 0 to 3 bytes

Table 4-4 Get data instruction

Example: Send the data acquisition instruction to the product:

0x5a 0x5a 0x02 0x00 0x02.

After the product is received, the data is returned.For the format content, see 3.2.3.4.

4.2.3.2 Get status command

This command is a response type command, which is sent to the product by the host computer. After the product is correctly received, it returns to the current state. The command format is shown in Table 4-5.

Table 4-5 Get status command Data Frame Byte number data unit type of data Remarks 0 0x5a Frame 1 header 0x5a Command 2 0x03 word 3 0x00 Data length Data content no End of 4 Checksum XOR of 0 to 3 bytes frame

Example: Send IMU50 to get status command:

(0x5a**) (**0x5a**) (**0x03**) (**0x03**)**₀

After receiving the product, it returns to the current state. For the format, see 4.2.3.5.

4.2.3.3 Baud rate setting

The command is sent to the product by the host computer, and the product immediately responds whether the reception is accurate. The command format is shown in Table 4-6.

Table 4	1-6 Bai	id rate	setting	instructi	ons
Table -	-0 Dau	iu rau	, sound	monucu	.0115

		Data Frame	Byte numbe	er	data	unit	type of data	f Remarks
		Frame	0		0x5a			
		header	1		0x5a			
		Command word	2		0x06			
		Data length	3		0x01			
		Data content	4	0x 0xt 0xt 0xt	00: 9600 bps 01: 19200 bps 02: 38400 bps 03: 57600 bps			
					BS-IC24WT	-M-D6	5EC	EX2.900.063SM
mark	Ch	ange ord	der S	Signature,	Total 22	Page	11	

		0x04: 115200 bps		
		0x05: 230400 bps		
		0x06: 460800 bps		
		0x07: 614400 bps		
End of				
	5	Checksum		XOR of 0 to 4 bytes
frame				

Example: Send a command to the product to set the baud rate to 9600.

$[0x5a][0x5a][0x06][0x01][0x00][0x07]_{\circ}$

After the product receives the command to set the baud rate, it immediately returns the response command and writes the configuration to the Flash. The next time the product is powered on again, it is the current configuration baud rate.

4.2.3.4 Data output

This command is issued by the product to the host computer, which is the response after the host computer sends a request to obtain data. The high byte of data transmission is first, and the command format is shown in Table 4-7.

Data Frame	Byte number	data	unit	type of data	Remarks
Frame	0	0x5a			
header	1	0x5a			
Command word	2	0x02			
Data length	3	0x28			
	4~7	X-axis gyro	°/s	float	
	8~11	Y-axis gyro	°/s	float	
Data contant	12~15	Z-axis gyro	°/s	float	
Data content	16~19	X-axis plus table	g	float	
	20~23	Y-axis plus table	g	float	
	24~27	Z-axis plus table	g	float	

Table 4-7 Data output instructions

				BS-IC24WT-M-D6EC	EX2.900.063SM
mark	Change o	order	Signature,	Total 22 Page 12	

	28~29	Heading	mil	short	LSB: 0.1mil
	30~31	Pitch angle	mil	short	LSB: 0.1mil
	32~33	Roll angle	mil	short	LSB: 0.1mil
	34~35	temperature	°C	short	LSB: 0.1°C
	36~37	Barometer	mbar	short	LSB: 0.04mbar
	38~39	X-axis magnetometer	mgauss	short	LSB: 0.1mgauss
	40~41	Y-axis magnetometer	mgauss	short	LSB: 0.1mgauss
	42~43	Z-axis magnetometer	mgauss	short	LSB: 0.1mgauss
End of frame	44	check			XOR and

4.2.3.5 Status information output

mark Change

order

Signature,

This command is issued by the product to the host computer, which is the response after the host computer sends the request to obtain the status. The command format is shown in Table 4-8.

	Data	Bute				type	
	Data	Byte		unit	of	Remarks	
	Frame	number					
	Frame	0		0x5a			
	header	1		0x5a			
	Command word	2		0x03			
	Data length	3					
		4~7			int		
		8~9		Lever arm size X	0.1m	Short	0.1m
		10~11		Lever arm size Y	0.1m	Short	0.1m
		12~13		Lever arm size Z	0.1m	Short	0.1m
		14	Status indica	tor			
			·				
				BS-IC24WT-M-D6EC	EX	2.900.	063SM
ark	Change	order S	Signature.	Total 22 Page 13	1		

Table 4-8 Status information output instructions

End of	16	check	XOR and
error code	15	1: fault; 0: normal	
		Bit7: reserved	
		1 Current magnetic calibration fails	
		Bit6: 0 Current magnetic calibration succeeds,	
		binding fails	
		Bit5: 0 Z-arm binding is successful, 1Z-arm	
		binding fails	
		Bit4: 0 Y-arm binding is successful, 1Y-arm	
		lever arm binding fails	
		Bit3: 0 X lever arm binding is successful, 1X	
		Rolling angle binding fails	
		Bit2: 0 Rolling angle binding is successful, 1	
		binding fails	
		Bit1: 0 The pitch binding is successful, 1 pitch	
		heading angle binding failed	
		Bit0: 0 Heading angle binding succeeded, 1	

4.2.3.6 Baud rate setting response command

After receiving the baud rate setting command from the host computer, the product immediately returns the response command, see Table 4-9 for details.

Table 4-9 Baud rate setting response command

Table 4-9 Dadd Tale setting response command							
	Data Frame	Byte number		data	unit	type of data	Remarks
	Frame	0		0x5a			
	header	1		0x5a			
	Command word	2		0x06			
-	Data length	3		0x01			
				BS-IC24WT-M-D6EC		5EC	EX2.900.063SM
mark	Change or	der Sig	nature,	Total 22	Page	14	

	ſ		1	
		0x00: 9600 bps		
		0x01: 19200 bps		
Data content		0x02: 38400 bps		
	4	0x03: 57600 bps		
		0x04: 115200 bps		
		0x05: 230400 bps		
		0x06: 460800 bps		
		0x07: 614400 bps		
End of				
C	5	Checksum		XOR of 0 to 4 bytes
frame				

After the product sends a return command, the new baud rate will take effect immediately, and the configuration will be written to Flash. The next time the product is powered on again, it will be the current configuration baud rate.

5 SPI data register

After the BS-IC24WT-M-D6EC startup process, the PAGE_ID register value is 0x0000, and page 0 is set as the valid page for SPI access. Page 0 includes output data and product identification registers.

5.1 Inertial sensor data format

The output data registers of the gyroscope, accelerometer, angle change, speed change, and barometer use a 32-bit two's complement format. Each output uses two registers to support this resolution. Figure 5-1 illustrates by example The role of various inertial measurements. In this example, X_GYRO_Out is the most significant word (upper 16 bits) and X_GYRO_Low is the least significant word (lower 16 bits). In many cases, only the most significant word register can provide sufficient resolution Rate to reflect key performance indicators.

Figure 5-1 Gyro data output example

5.2 Gyroscope

The main registers used for gyroscope measurements use the X_GYRO_Out format (see Table 5-1, Table 5-2, and Table 5-3). When processing the data in these

				BS-IC24WT-M-D6EC	EX2.900.063SM		
mark	Change	order	Signature,	Total 22 Page 15			
	0		, ,	•			

registers, use the 16-bit twos complement data format. Table 5-4 gives An example of X_GYRO_Out digital encoding is given.

Table 5-1 X_GYRO_OUT (page 0, base address = 0x12)

Bit	Explanation
[15:0]	X-axis gyroscope data; two's complement, ± 450 ° / sec range, 0 ° / sec = 0x0000, 1 LSB = 0.02 ° / sec

Table 5-2 Y_GYRO_OUT (page 0, base address = 0x16)

Bit	Explanation
[15:0]	Y-axis gyroscope data; two's complement, ± 450 ° / sec range, 0 ° / sec = 0x0000, 1 LSB = 0.02 ° / sec

Table 5-3 Z_GYRO_OUT (page 0, base address = 0x1A)

Bit	Explanation
[15:0]	Z-axis gyroscope data; two's complement, \pm 450 ° / sec range, 0 ° /
	$sec = 0x0000, 1 LSB = 0.02 \circ / sec$

Table 5-4 X_GYRO_OUT data format example

Spin rate	Decimal	Hex	Binary
+450°/sec	+22,500	0x57E4	0101 0111 1110 0100
+0.04/sec	+2	0x0002	0000 0000 0000 0010
+0.02°/sec	+1	0x0001	0000 0000 0000 0001
0°/sec	0	0x0000	0000 0000 0000 0000
-0.02°/sec	-1	0xFFFF	1111 1111 1111 1111
-0.04°/sec	-2	0xFFFE	1111 1111 1111 1110
-450°/sec	-22,500	0xA81C	1010 1000 0001 1100

Registers using the X_GYRO_Low naming format are used to improve the resolution of gyroscope measurements (see Table 5-5, Table 5-6, and Table 5-7). The weight of MSB is 0.01° / sec, and the weight of subsequent bits is the previous $\frac{1}{2}$.

Table 5-5 X_GYRO_LOW (page 0, base address = 0x10)

Bit	Explanation
[15:0]	X-axis gyroscope data; additional resolution bits

Table 5-6 Y_GYRO_LOW (page 0, base address = 0x14)

Bit	Explanation
[15:0]	Y-axis gyroscope data; additional resolution bits

Table 5-7 Z_GYRO_LOW (page 0, base address = 0x18)

				BS-IC24WT-M-D6EC	EX2.900.063SM
mark	Change	order	Signature,	Total 22 Page 16	

Bit	Explanation
[15:0]	Z-axis gyroscope data; additional resolution bits

5.3 Accelerometer

The main registers used for accelerometer measurement use the X_ACCL_OUT format (see Table 5-8, Table 5-9, and Table 5-10). When processing the data in these registers, use the 16-bit twos complement data format. An example of X_ACCL_OUT digital encoding is given.

Table 5-8 X ACCL OUT (page 0, base address = 0x1E)

Bit	Explanation
[15:0]	X-axis accelerometer data; two's complement, \pm 18 g range, 0 g =
	0x0000, 1 LSB = 0.8 mg
	Table 5-9 Y_ACCL_OUT (page 0, base address = $0x22$)

Bit	Explanation
[15:0]	Y-axis accelerometer data; two's complement, \pm 18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg

Table 5-10 Z_ACCL_OUT (page 0, base address = 0x26)

Bit	Explanation
[15:0]	Z-axis accelerometer data; two's complement, \pm 18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg

Table 5-11 Example of X_ACCL_OUT data format

Acceleration	Decimal	Hex	Binary
+18g	+22,500	0x57E4	0101 0111 1110 0100
+1.6mg	+2	0x0002	0000 0000 0000 0010
+0.8mg	+1	0x0001	0000 0000 0000 0001
0 mg	0	0x0000	0000 0000 0000 0000
-0.8mg	-1	0xFFFF	1111 1111 1111 1111
-1.6mg	-2	0xFFFE	1111 1111 1111 1110
-18g	-22,500	0xA81C	1010 1000 0001 1100

Registers using the X_ACCL_LOW naming format are used to improve the resolution of accelerometer measurements (see Table 5-12, Table 5-13, and Table 5-14). The weight of the MSB is 0.4 mg, and the weight of subsequent bits is 1/2 of the previous bit.

Table 5-12 X_ACCL_LOW (page 0, base address = 0x1C)

		Bit	Explanation	Explanation					
	L								
				BS-IC24WT-M-D6EC	EX2.900.063SM				
mark	Change	order	Signature,	Total 22 Page 17					

-	[15:0]	x-ax	is acceler	rometer	data; additiona	l resolution bi	ts	
-		Table	5-13 Y A	ACCL	LOW (page 0, t	base address =	0x20)	
	Bit	Expl	lanation	anation				
	[15:0]	x-ax	is acceler	rometer	data; additiona	ll resolution bi	its	
		Table	5-14 Z_A	ACCL_I	LOW (page 0, ł	base address =	0x24)	
Bit E			xplanation					
	[15:0]	x-ax	is acceler	ometer	data; additiona	l resolution bi	ts	
5.4	Magnetor	neter						
	The main	registers	used fo	r mag	netometer me	asurement u	ise the X-MAGN_OUT	
form	nat When r	rocessir	ng the d	ata in	these register	$r_{\rm s}$ the 16-bit	t twos complement data	
form	$\frac{1}{1}$	Table 5	15 Tab	la 5 16	and Table 5	17 give the	number format of each	
rogic	ator Tabla	5 18 giv	$\sim 10, 100$	AGN	OUT digital	oding over		
Tegis		J-10 giv	5 15 V	AON_			- 028)	
	Bit	F	xnlanatic	n	_001 (page 0, 1	base address –	- 0x28)	
	[15:0]		-axis ma	gnetom	eter data; two's	complement,	\pm 3.2767 gauss range,	
		0	0 gauss = $0x0000$, 1 LSB = 0.1 mgauss					
		Table 5	5-16 Y_N	IAGN_	OUT (page 0, l	base address =	0x2A)	
	Bit		Explanation					
	[15:0]		Y-axis magnetometer data; two's complement, ± 3.2767 gauss range, 0 gauss = 0x0000, 1 LSB = 0.1 mgauss					
		Table 5	5-17 Z N	IAGN	OUT (page 0, b	base address =	0x2C)	
	Bit		Explanation					
	[15:0]		Z-axis magnetometer data; two's complement, \pm 3.2767 gauss range,					
		0	0 gauss = 0x0000, 1 LSB = 0.1 mgauss					
	Magnatia f	Tab	Decim		e of X_MAGN_	OUT data for	mat	
	+3.2767 m		+3276	aı 7	Ox7FFF	0111 1111	1111 1111	
	+0.2 mgaus	SS	+2	,	0x0002	0000 0000	0 0000 0010	
	+0.1 mgaus	88	+1		0x0001	0000 0000	0000 0001	
	0 gauss		0		0x0000	0000 0000	0000 0000	
	-0.1 mgauss		-1		0xFFFF	1111 1111	1111 1111	
	-0.2 mgauss		-2		0xFFFE	1111 1111	1111 1110	
	-3.2768 gauss		-3276	8	0x8000	1000 0000	0000 0000	
			I					
				BS	-IC24WT-N	A-D6EC	EX2.900.063SN	
ark Change	ordor	Signat	1170		Total 22 P	Page 18		

5.5 Barometer

The BAROM_OUT register (see Table 5-19) and the BAROM_LOW register (see Table 5-20) are used to access barometric pressure data. These two registers together form a 32-bit two's complement format. Some applications can only use BAROM_OUT. If BAROM_LOW is required The higher resolution provided is the same as the gyro. The 16-bit twos complement data format is used when processing data from the BAROM_OUT register only. Table 5-21 provides the digital format of BAROM_OUT, table 5-21 An example of numeric encoding is given.

Table 5-19 BAROM OUT (page 0, base address = 0x30)

Bit	Explanation
[15:0]	Air pressure; two's complement, ± 1.31 bar range, 0 bar = 0x0000, 40 µbar / LSB

Table 5-20 Barom out data format example

Air pressure (bar)	Decimal	Hex	Binary
$+0.00004 \times (2^{15}-1)$	+32767	0x7FFF	0111 1111 1111 1111
+0.00008	+2	0x0002	0000 0000 0000 0010
+0.00004	+1	0x0001	0000 0000 0000 0001
0	0	0x0000	0000 0000 0000 0000
-0.00004	-1	0xFFFF	1111 1111 1111 1111
-0.00008	-2	0xFFFE	1111 1111 1111 1110
-0.00004 × (2^15 - 1)	-32768	0x8000	1000 0000 0000 0000

The BAROM_LOW register is used to improve the resolution of the barometric pressure measurement. The weight of the MSB is 20 _bar, and the weight of subsequent bits is 1/2 of the previous bit.

Table 5-21 BAROM_LOW (page 0, base address = 0x2E)

Bit	Explanation
[15:0]	Air pressure; additional resolution bits

5.6 Internal temperature

The TEMP_OUT register provides internal temperature measurement results for observing the relative temperature change inside the product (see Table 5-22). Table 5-23 gives an example of the digital encoding of TEMP_OUT. Note that this temperature is higher than the ambient temperature due to self-heating effects.

Table 5-22 TEMP_OUT (page 0, base address = 0x0E) bit

				BS-IC24WT-M-D6EC	EX2.900.063SM
mark	Change	order	Signature,	Total 22 Page 19	

Bit	Expla	Explanation					
[15:0]	Temp	Temperature data; two's complement, 0.00565 ° C / LSB, 25 ° C = $0_x 0000$					
Table 5-23 temp_out data format example							
temperature		Decimal	Hex	Binary			
+85		+10,619	0x297B	0010 1001 0111 1011			
+25 + 0.0113		+2	0x0002	0000 0000 0000 0010			
+25 + 0.00565		+1	0x0001	0000 0000 0000 0001			
+25		0	0x0000	0000 0000 0000 0000			
+25 - 0.00565		-1	0xFFFF	1111 1111 1111 1111			
+25 - 0.0113		-2	0xFFFE	1111 1111 1111 1110			
-40		-11504	0xD310	1101 0011 0001 0000			

6 Functional testing

6.1 Wiring method

If the user accesses the data through the SPI port, the connection diagram is shown in Figure 6-1.

If the user can access the data through the UART port, see Figure 6-2 for the connection diagram.

				BS-IC24WT-M-D6EC	EX2.900.063SM
mark	Change	order	Signature,	Total 22 Page 20	

Figure 6-2

6.2 Functional test

The external MCU reads the register data of the BS-IC24WT-M-D6EC multifreedom inertial measurement unit through SPI, calculates the parameters of the gyro, accelerometer, magnetic field, and air pressure according to the corresponding method, and verifies the function of the product through various data.

7 Installation and adjustment

The BS-IC24WT-M-D6EC three-axis gyro combination is installed through four Φ 2.4 through holes and is installed with screws. When the connector is installed, the plug should correspond to each pin of the socket, and the product is fixed by screws.

It is recommended that the flatness of the mounting surface opposite to the reference surface is not greater than 0.02mm, the perpendicularity is not greater than 0.04mm, and the surface roughness is not greater than 0.8μ m.

8 Operation and maintenance requirements

Before use, the installation position of the system must be checked to ensure correct installation. Carefully check the connection of each signal cable to ensure correct connection.

Before powering on, the values of the cable network contacts and the power supply should be checked, and the polarity of the power supply is prohibited to be reversed.

In use, the system mechanical ground should ensure good grounding.

This product contains precision instruments, and it is forbidden to knock or fall.

This product should be stored in a warehouse with a temperature of $(15 \sim 35)$ °C, a relative humidity of not more than 75%, and no acid, alkali, corrosive gas, and good

					BS-IC24WT-M-D6EC	EX2.900.063SM
	mark	Change	order	Signature,	Total 22 Page 21	

ventilation.

Appendix A Packing list

BS-IC24WT-M-D6EC product matching table

Serial number	Name	Quantity	Unit	Remarks
1	BS-IC24WT-M-D6EC products	1	Station	
2	Product certification	1	Portion	
3	user's Guide	1	Portion	
4	Packing List	1	Portion	
5	Product box	1	Pc	

				BS-IC24WT-M-D6EC	EX2.900.063SM
mark	Change	order	Signature,	Total 22 Page 22	