MEMS Inertial Measurement Unit V 1.00

BS-IC209-M-D6EC

Product characteristics

- Gyro measuring range: 500 °/s
- 3 °/H gyroscope bias stability (Allan variance)
- Acceleration range: 30g
- $^{\wedge}\,$ Zero bias stability (Allan variance) for acceleration of 0.1 mg

Field of application

UAV Navigation Robot Navigation AUV Navigation Various air carriers flight navigation land vehicle navigation ROV navigation

1. Product overview

The BS-IC209-M-D6EC is an inertial measurement unit (IMU) based on micromachining technology (MEMS) with built-in high-performance MEMS gyroscope and MEMS accelerometer, which outputs 3 angular velocities and 3 accelerations. The utility model has the advantages of high reliability and strong environmental adaptability. By matching different software, the product can be widely used in tactical and industrial UAV, smart ammunition, seeker and other fields.

2. Product features

1) Three-axis digital gyroscope:

- A) ± 500°/s dynamic measuring range;
- B) Zero bias stability: 15 °/H (GJB, 10s), 3 °/H (ALLAN);

2) Triaxial digital accelerometer:

- A) ± 30g dynamic measuring range;
- C) Zero-bias stability: 0.5 mg (GJB, 10s), 0.1 mg (ALLAN);
- 3) High reliability: MTBF > 20000h;

4) Guaranteed accuracy within the full temperature range (-40 °C ~ 80 °C): built-in

high-performance temperature calibration and compensation algorithm;5) Suitable for working under strong vibration conditions;

Ра	rameter	Test conditions	Design accuracy	Unit
	Dynamic measuring range	-	±500	°/s
	Zero bias	Allan variance (500 °/s range, normal temperature)	3	º/h
Dogton	stability	10 s average (-40 ℃ ~ + 80 ℃, constant temperature)	15	º/h
Peg-lop		Zero bias range	≤±0.05	°/s
	Zero bias	Zero bias variation over full temperature range (10 s average)	±0.07	°/s
		Start repeatability	0.01	°/s
		Ffect of linear acceleration on bias	0.002	°/s/g

3. Product indicators

Pa	irameter	Test conditions	Design accuracy	Unit
		Scale factor accuracy	0.2	%FS
	Scale factor	Scale factor nonlinearity	0.05	%FS
	Angular	_	0.06	°/√br
	random walk	-	0.00	7 9111
	Bandwidth	-	200	Hz
	Dynamic			
	measuring	-	30	g
	range			
		Allan variance (16g range,	0.1	ma
	Zero bias	normal temperature)	0.1	ing
	stability	10 s average (-40 ℃ ~ +	0.5	ma
		80 °C, constant temperature)	0.5	ing
Acceler		Zero bias range	±2	mg
ometer	Zara hisa	Zero-bias variation over full	10	
	Zero bias	temperature range	±Ζ	mg
		Start repeatability	0.2	mg
		Scale factor accuracy	0.2	%
	Scale factor	Scale factor nonlinearity	0.05	%FS
	Speed	_	0.08	m/s/√hr
	random walk	-	0.00	111/5/ 111
	Bandwidth	-	200	Hz
Commu				
nication	1-way SR/22	Baud rate	460.8	MHz
interfac		Daud Tale	400.0	
е				
Electric	Voltage	-	5±0.5	V
al	Power	_	15	\٨/
charact	consumption	-	1.5	vv
eristics	Ripple	P-P	150	mV
Structur	Sizo		44.8×38.6×1	mm
al	Size	-	3.5	11111
charact	\N/oight		15-1	a
eristics	veigitt	-	4JI I	У
Use	Operating		_10~20	°C
environ	temperature	-	-40~00	C
ment	Storage	-	-45~85	°C

Ра	rameter	Test conditions	Design accuracy	Unit
	temperature			
	Vibratian		20~2000Hz,	
	Vibration	-	6.06g	
	Impost		8000g,	
	Impact	-	0.5ms	
Deliebili	MTBF	-	20000	h
Reliabili	Continuous		100	h
iy	working time	-	120	n

4. Electrical interface

The model of connector connecting BS-IC209-M-D6EC product to the outside is J30JE-15ZKN-J, and its schematic diagram and pin definition are as follows.

Graph 1 Connector node configuration

Contact number	Pin definition	Туре	Explain			
1	TxD-	OUTPUT	Product RS422 output interface			
			negative terminal			
2	RxD-	INPUT	Product RS422 receiving interface			
			negative terminal			
8	VSUP	SUPPLY	Positive end of product power			
			supply, DC + 5V power supply			
9	TxD+	OUTPUT	Product RS422 output interface			
			positive terminal			
10	RxD+	INPUT	Product RS422 receiving interface			
			positive terminal			
15	422GND	OUTPUT	Product RS422 serial port ground			
12	GND	SUPPLY	Product ground, power ground			

			and serial port ground
13	GND	SUPPLY	Product ground, power ground
			and serial port ground
3~7、11、14	Reserved by	/	/
	the		
	manufacturer		

5. Fabric interface

Graph 2Schematic diagram of structure outline

6. Instructions for use

6.1 Communication protocol description

The product communicates with external equipment through RS422 serial communication interface. During data transmission, each character includes 8 data bits, 1start bit, 1stop bit, and no parity bit. The definition of the data packet output by the product is shown in Table 3, and the communication cycle is 1ms.

Parameter name	Effective range	Byte	Scale	Remark		
Frame	99 H	1				
header						
X-axis						
angular	[-512, 512]	3	2^{-14}			
velocity				Linit: (/s from high to low the		
Y-axis				most significant bit of the first but		
angular	[-512, 512]	3	2^{-14}			
velocity				is the sign bit. See Note 1 for the		
Z-axis						
angular	ngular [-512, 512] 3 2 ⁻¹⁴					
velocity						
Curra atatua		1		All zeros are normal. See Table 3		
Gyro status		I		for specific definitions.		
X-axis	[100 100]	2	2-8			
temperature	[-120, 120]	2	2 *	Unit: °C, from high to low, the		
Y-axis	[400 400]	0	a -8	most significant bit of the first byte		
temperature	[-128, 128]	2	2 °	is the sign bit. See Note 2 for the		
Z-axis	[400 400]	0	a -8	specific algorithm.		
temperature	[-128, 128]	2	2 °			
Frame	[0 255]	1	1			
count	[0, 200]	1	1			
Checksum		1		CRC check,		
Checksull				polynomial $x^8 + x^2 + x + 1$		

Note: If the Z-axis gyroscope does not output angular velocity, this bit of data will be set to zero.

Explain

$$\frac{AR_1 \cdot 2^{16} + AR_2 \cdot 2^8 + AR_3}{AR_1 \cdot 2^{16} + AR_2 \cdot 2^8 + AR_3}$$

A) gyro angular velocity output $[^{\circ}/s] = 2^{14}$? See Figure 1 for data bit format;

Among AR_1 Outputting the high eight bits of the three bytes for the angular velocity of each axis of the gyroscope;

 AR_2 Outputting the middle eight bits of the three bytes for the angular velocity of each axis of the gyroscope;

 AR_3 Outputs the lower eight bits of the three bytes for the angular velocity of each axis of the gyro.

←			- AR	1 —			-	+			AR;	2			-	-			AR3				-
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sign	2 ⁸	27	2 ⁶	2 ⁶	24	2 ³	2²	2 ¹	2 ⁰	2.1	2²	2 ⁻³	24	26	2.6	27	2 ^{.8}	2.0	2.10	2 ⁻¹¹	2 ⁻¹²	213	2.14

Graph 3 Convert gyro angular velocity output to [%]

$$\underline{T_1 \cdot 2^8 + T_2}$$

B) gyro temperature output [°C] = 2^8 The data bit format is shown in Figure 2.

Among T_1 Outputting high eight bits in two bytes for the temperature of each axis of the gyroscope;

 T_2 Outputs the lower eight bits of the two bytes for the temperature of each axis of the gyro.

-			- T ₁					-			- T ₂				
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	BIt 3	8112	Bit 1	BtO
Sign	26	23	24	22	22	21	2 ⁰	21	2.3	23	2*	2'5	2%	23	2.4

Graph 4 Convert gyro temperature output to [°C]

7. Update the record

Serial numbe r	Version	Change the date	Before the chang e	After the change	Reason for the change	Changed by
1	1.00	20230103		New establishment	New establishmen	Asl

t t

©COPYRIGHT 2013, FIREPOWER TECHNOLOGY.

