Product Introduction, Technical Data and Market Application of

Laser Gyro

- Volume - Colored - Color

Laser gyro is a technology that has been studied since the 1960s. Its main advantage is its high accuracy and its price is lower than that of mechanical gyroscopes with the same accuracy. The cost of fiber optic gyroscope appeared after the 1970s is lower than that of ring laser gyroscope, but limited by its design principle, it is still inferior to the former in the field of pursuing high precision. The cost of modern MEMS gyroscope is very low, and its accuracy can meet the needs of the general field, and it can be integrated into the microchip, so it has become the mainstream gyroscope in the current civil field. However, in the military field, laser gyroscopes and fiber optic gyroscopes are still the mainstream products, especially in the fields of medium and long range missile guidance, aviation, navigation, aerospace and so on. This is mainly because the accuracy of MEMS gyroscopes is still not up to the level of laser gyroscopes, including satellite-guided bombs, short-range ballistic missiles and other weapons can use MEMS gyroscopes for guidance, but they must be corrected by satellite positioning, while long-range weapons are difficult to use MEMS gyroscopes because of excessive cumulative errors. Especially in the submarine, the high-precision laser gyroscope is of great significance. The submarine has been underwater for a long time, and can not correct the accumulated error of its inertial navigation system through satellite positioning, so its inertial measurement components must have extremely high precision to meet the requirements of use.

Laser gyro is an instrument based on Sagnac effect, which can obtain the angular velocity of carrier relative to inertial space by measuring the frequency difference of bidirectional traveling waves in the ring laser resonator. Its main function is to measure the angular velocity and angle of the carrier. It has the advantages of high precision, high reliability, long life, short start-up time, large dynamic range and excellent environmental stability. It is widely used in inertial navigation and guidance, attitude measurement and control, positioning and orientation, dynamic angle measurement and so on.

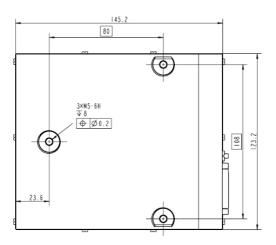
Laser gyro, accelerometer and corresponding control circuit constitute an inertial navigation system, which can provide information for attitude control, guidance and navigation applications of moving carriers.

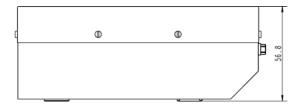
\equiv **Equip objects**

Laser inertial navigation system

Ξ、 BS-GL90-4-D laser gyroscope

Image of BS-GL90-4-D laser gyroscope


(1) Main technical indicators


Main technical indicators		Level 1	Secondary	Level 3
		accuracy	accuracy	accuracy
	Zero-bias stability (°/Η) (1σ)	≪0.003	≪0.005	≪0.008
Perfor	Zero-bias repeatability (°/Η) (1σ)	≪0.002	≪0.003	≪0.005
mance	Random walk coefficient (°/√H)	≪0.0005	≪0.001	≪0.0015
	Scale factor stability (1o)	≤2 ppm		
	Dynamic range	\geqslant \pm 400 $^{\circ}$ /s		
	Start time	≤10s		

	MTBF	≥10000 h		
	Once-through continuous working time	Unlimited		
Physics	Gyroscope form factor	(148 ± 1) × (126 ± 1) × (57 ± 1) mm		
and	Weight	≪2Kg		
Electrical	Power consumption <4W			
Environment	Operating ambient	-40°C∼+70°C		
	temperature			
Adaptab	Storage temperature	-55℃~+85℃		
ility				

(2) Overall dimension and external interface

The J30JM-ZKP37 37-core electrical connector is used to connect the power supply, output signal and the temperature sensor in the gyroscope. The specific wiring definitions of RLG 90 are shown in the following table.

Pin	Signal definition	Explain	
7	Bsin	True channel angles signal	
20, 26	GND	Two-channel analog signal	
8	Asin	output	
9, 27	BTTL		
10, 18	GND	Two digital level outputs	
11, 29	ATTL		
12	PT-1	4	
30	PT-2	4 platinum resistors and their common terminals	
13	PT-3		
31	PT-4	(for temperature monitoring)	
14, 32	PT-COM	momornig)	
15, 33	GND		
16, 34	+5V	\pm 5V power input	
19, 37	-5V	1	
17, 35	+15V	+ 15 V supply input	
18, 36	+15V_GND	+ 15 V supply input	
1, 2, 3, 4, 5,			
6, 21, 22, 23,	Keep it for yourself	Leave the test port blank	
24, 25			

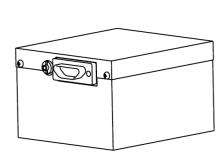
(3) Maintainability

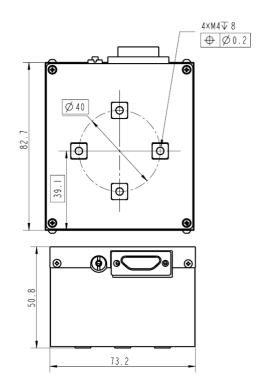
If the laser gyro fails, it shall be returned to the factory for repair.

(4) Storage

The laser gyro shall be stored at normal temperature and in a dry and dustproof environment.

四、BS-GL50-4-D laser gyroscope


Image of Laser Gyroscope BS-GL50-4-D


(1) Main technical indicators

Main	technical indicators	Level 1	Secondary	Level 3
		accuracy	accuracy	accuracy
	Zero-bias stability	≤0.01	≤0.03	≤0.05
	(°/H) (1σ)			
	Zero-bias repeatability	≤0.01	≤0.03	≤0.05
	(°/H) (1σ)			
Perform	Random walk coefficient	≤0.002	≤0.005	≤0.009
ance	(°/√H)			
	Scale factor stability	≤5 ppm		
	(1σ)			
	Dynamic range	≥±400°/s		
	Start time	≤10s		
	MTBF	≥5000 h		

	Once-through continuous working time	Unlimited	
Physics	Gyroscope form factor	(85 \pm 1)×(75 \pm 1)×(52 \pm 1) mm	
and	Weight	≤650g	
Electrical	Power consumption	≤3W	
Performance			
Environment	Operating temperature	-40°C ~ +65°C	
	Storage temperature		
Adaptab		-55°C ~ +85°C	
ility			

(2) Overall dimension and external interface

The 25-core J30JM-ZKP25 connector is used to connect the power supply, the output signal and the temperature sensor in the gyroscope. The specific wiring definitions of the BS-GL50-4-D are shown in the following table.

Pin	Signal definition	Explain
1, 14	+15V	Power supply of high
2, 15	+15V_GND	voltage power board
6, 19	+5V	
4, 17	GND	Power supply of main control circuit board
7、20	-5V	
8,21	ATTL	
9、22	BTTL	Readout signal
23	GND	
10	Temperature sensor 1	
10	output	
12	Temperature sensor 2	
12	output	Tomporatura cignal
13	Temperature sensor 3	Temperature signal
13	output	
11	Temperature sensor	
11	common	
24、25、18、 5、16、3	Keep it for yourself	Leave the test port blank

(3) Maintainability

If the laser gyro fails, it shall be returned to the factory for repair.

(4) Storage

The laser gyro shall be stored at normal temperature and in a dry and dustproof environment.