•	Format
Diskette	Fare Phase S
CAD	s S Mark
	DS CC20 400 D2EC
	BS-GC20-400-D3EC
	Operation Instruction of Micro Gyroscope
	Assembly
Countersig	EX2.900.001SM
	Compilation
	Proofread Li Wei 2019 0428
	AuditBai Ling 2019 0428
	Zhang Shan 2019 0428
	Bid review
	Approvalu Wenjing 2019 0428
Description	Liu Jialiang is 20190428
Trace and	
Old base map	
Base map	

CAD

Tracing

Trace

01d base map

This instruction manual is the main reference document for the use and operation of BS-GC20-400-D3EC micro gyroscope combination.

The micro-gyroscope assembly can be configured into biaxial or triaxial according to the customer's requirements. This manual describes the three-axis gyroscope assembly, and the biaxial product also meets the requirements of this manual.

This instruction manual is mainly prepared in accordance with the Technical Agreement of BS-GC20-400-D3EC Micro Gyroscope Assembly and the Technical Conditions of Inertial Measurement Unit and Triaxial Gyroscope Assembly.

1 Product features and technical parameters

1.1 Composition and function

The micro gyroscope assembly is composed of a three-axis gyroscope, a temperature sensor, a signal processing board, a structure and necessary software, and is used for measuring the three-axis/two-axis angular rate of a carrier, and outputting three angular rate data subjected to error compensation (including temperature compensation, installation misalignment angle compensation, nonlinear compensation and the like) through an RS-422 serial port according to an agreed communication protocol.

1.2 Main technical parameters

- 1.2.1 Gyroscope specifications
 - a) Measuring range: $\pm 400 \text{ °/s}$
 - b) Zero-bias stability (@ Allan variance): $\leq 1 \circ / H$
 - c) Zero-bias stability (1s smooth, 1σ , room temperature): ≤ 10 °/H
 - d) Zero bias error within full temperature range: ≤ 20 °/H
 - e) Random walk: $\leq 0.2 \circ / \sqrt{H}$
 - f) Zero-bias repeatability:

- <10°/h
- g) Zero bias acceleration sensitivity: $\leq 1 \text{ °/H/G}$
- h) Resolution: ≤ 0.001 °/s

Base	map				BS-GC20-400-D3EC	EX2.900.001SM
		Mark	Change order	Signature,	Page 19 No. 2 Page	

		i) Scale	factor nonlinear	rity: ≤ 100 ppm	
CAD	_	j) Repea	atability of scale	factor: ≤ 100 ppm	
	-	k) Cross	s coupling: ≤ 0.1	%	
		l) Band	width:		≤250Hz
		m) Weigh	ht: (52 ± 5) G		
		1.2.2 Power	supply requir	ements	
		a) Suppl	ly voltage: (+ 5 =	± 0.5) V (DC);	
		b) Powe	er supply current	: working current < 0.3A;	
		1.2.3 Enviro	onmental adap	tability	
		a) Wor	king temperatur	e: (-45 ~ 85) °C	
		b) Stora	age temperature	: (-55 ~ 105) °C	
		c) Vibr	ration: 10 ~ 2000	0Hz, 6.06g	
		d) Impa	act: 5000 G, 0.11	ms	
		2 Space co	ordinate syste	m	
		2.1 Right H	and Rule Prin	ciple 1	
		The three	e-degree-of-free	dom gyroscope contained in	the micro-gyroscope
		assembly repre	sents the spatial	coordinate system of three axes,	namely X, Y and Z. The
		X axis points to	o the direction o	f the electrical connection interf	face, the Y axis points to
		the left side of	the micro-gyros	cope assembly, and the Z axis re	fers to the top surface of
		the micro-gyro	assembly, as sh	own in Figure 2-1.	
				微陀螺组合 ×׬××× ★×	
Tracing				DC IN +5V	
Trace		-	-	ordinate System of Micro Gyroscope cro-gyroscope assembly should 1	
	,	i ne mstai		sto-gytoscope assentory should l	
ld base map					
ld base map			1	4	1
ld base map Base map				BS-GC20-400-D3EC	EX2.900.001SM

CAD

Tracing

of the coordinate system, otherwise the measured angular velocity data is not accurate. Following the "right hand rule principle 1", you can quickly assign and determine the axis of the coordinate system. Stretch out the right hand and spread out the thumb, index finger and middle finger respectively. The direction of the thumb is the X axis, the direction of the index finger is the Y axis, and the direction of the middle finger is the Z axis, as shown in Figure 2-2.

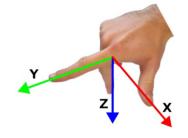


Figure 2-2 Right Hand Rule Principle 1

2.2 Right hand rule principle two

The angular velocity in three directions can be measured by a three-degree-offreedom gyroscope combined with a micro-gyroscope. The direction of the angular velocity of the axial rotation of the coordinate axis can be quickly determined by following the "right-hand rule principle 2". Stretch out the right hand and unfold the thumb. The direction of the thumb is the axial direction. The direction of the other four fingers is the positive direction of angular velocity of the axial rotation of the thumb. The opposite direction of bending the four fingers is the negative direction of angular velocity, as shown in Figure 2-3.

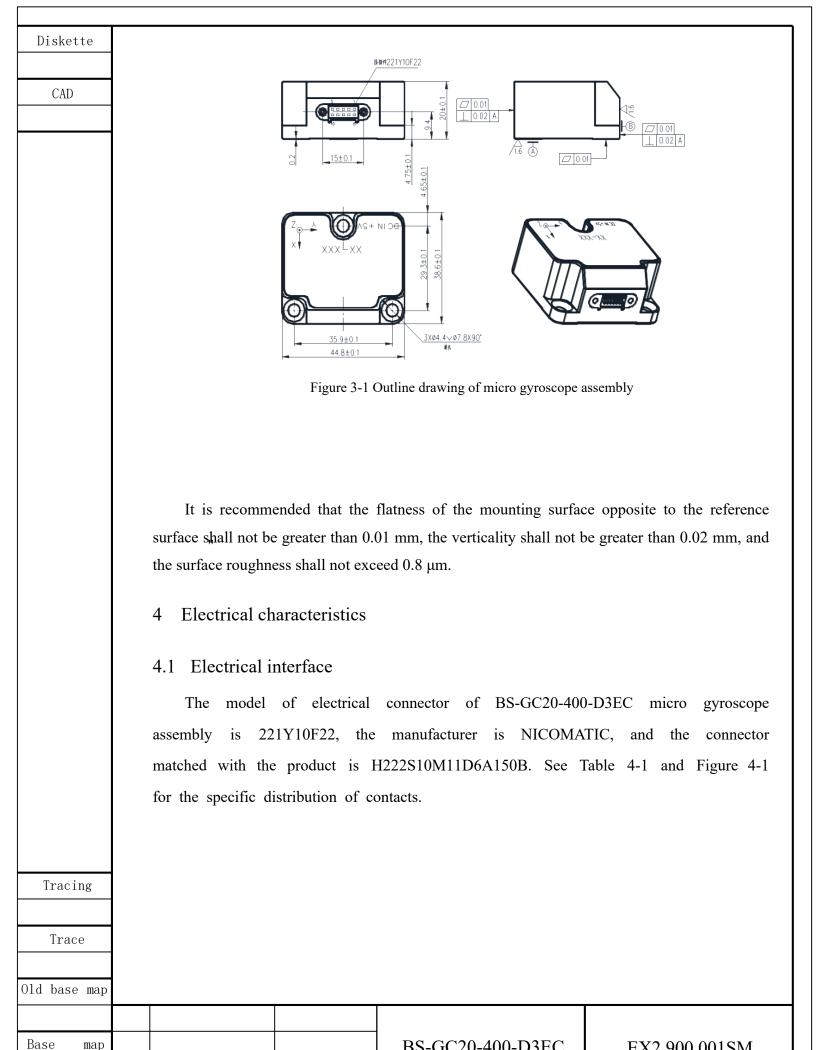


Figure 2-3 Right Hand Rule Principle 2

3 Structural installation

See Figure 3-1 for the outline drawing of BS-GC20-400-D3EC micro gyroscope assembly.

Trace					
Old base map					
Base map				BS-GC20-400-D3EC	EX2.900.001SM
	Mark	Change order	Signature,	Page 19 No. 4 Page	

Page 19 No. 5 Page

map

Mark

Change order

Signature,

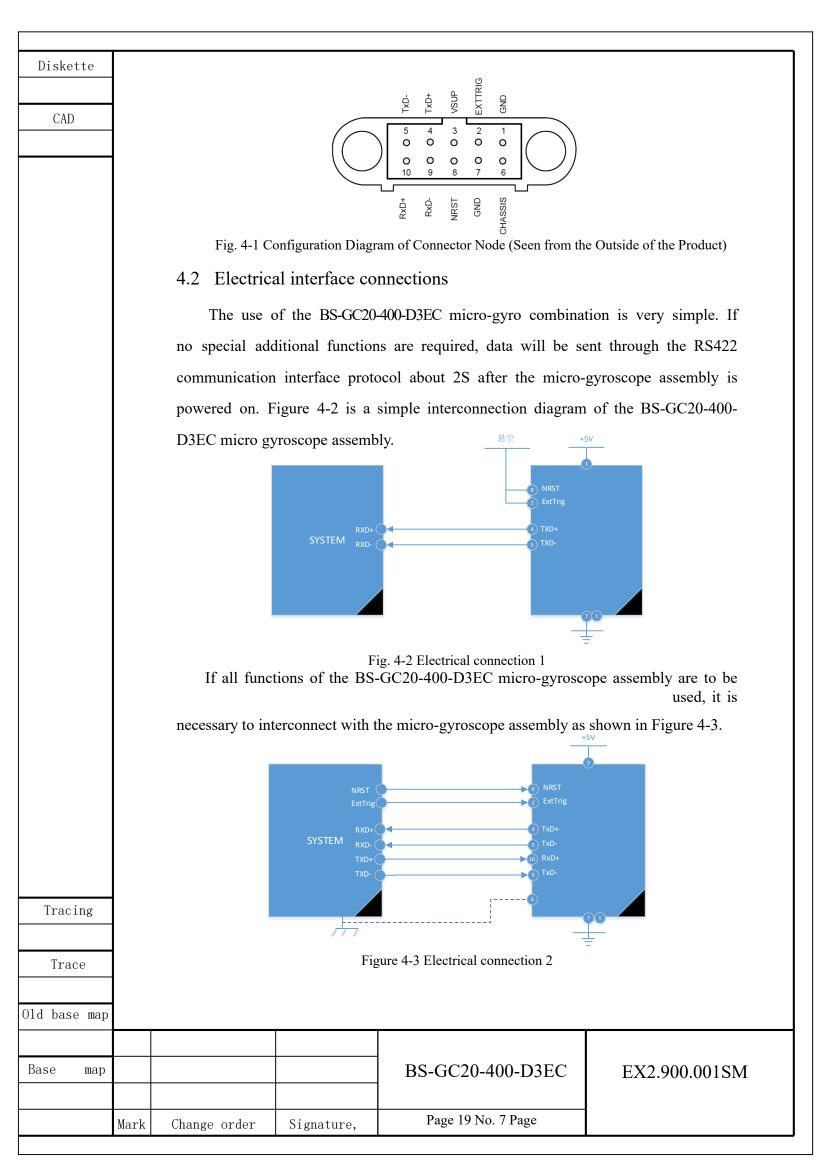
EX2.900.001SM

Tracing

CAD

Table 4-1 Contact Distribution Table						
Node number	Node definition	Туре	Explain			
1	GND	SUPPLY	Power ground ⁽⁴⁾			
2	ExtTrig	INPUT	External Trigger Source ⁽³⁾			
3	VSUP	SUPPLY	Positive end of product power supply, DC regulated power supply + 5V			
4	TxD+	OUTPUT	Product RS422 output interface positive terminal			
5	TxD-	OUTPUT	Product RS422 output interface negative terminal			
6	CHASSIS	CHASSIS	Product mechanically isolated from power ground			
7	GND	INPUT	Signal Ground ⁽⁴⁾			
8	NRST	INPUT	Reset signal ⁽²⁾			
9	RxD-	INPUT	Product RS422 receiving interface negative terminal			
10	RxD+	INPUT	Product RS422 receiving interface positive terminal			

Note:


(1) The reference object of the sending and receiving function of RS422 communication in the table is the micro-gyroscope combination.

(2) The reset signal needs to be specially configured according to the requirements. The default micro-gyroscope combination does not have this configuration. The internal configuration is a 3.3 V pull-up resistor, which can be suspended or connected to VSUP.

(3) The external trigger source needs to be specially configured according to the requirements. The default micro-gyroscope combination does not have this configuration. The internal configuration is a 3.3 V pull-up resistor, which can be suspended or grounded.

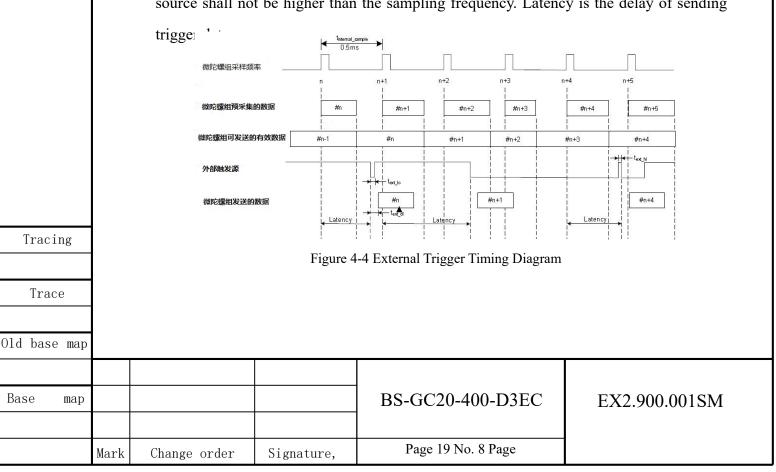
(4) The signal ground and the power ground are connected together by magnetic beads, which can be considered to be electrically connected.

Trace					
Old base map					
Base map				BS-GC20-400-D3EC	EX2.900.001SM
	Mark	Change order	Signature,	Page 19 No. 6 Page	

CAD

4.3 Additional Function 1: Reset

The BS-GC20-400-D3EC microgyroscope assembly has a separate digital input pin (NRST) that allows the BS-GC20-400-D3EC to be reset without re-powering up if the microgyroscope assembly has completed a specific configuration. The trigger mode of the NRST signal can be specially defined according to the requirements.


4.4 Additional function 2: external trigger

The BS-GC20-400-D3EC micro gyroscope assembly has an independent digital input pin (ExtTrig). If the micro gyroscope assembly completes a specific configuration, it can send data through the RS422 communication interface protocol when it receives an external trigger source signal and generates an interrupt. The frequency of the sent data is synchronized with the frequency of the ExtTrig signal. However, there are two special cases where sending data is not affected by an external trigger source:

a) In the normal mode, send the command 'C' to the micro-gyroscope assembly, test the RS422 interface, and the micro-gyroscope assembly will transmit the configuration data stream without being affected by the external trigger source.

b) In the power-on initialization state, the micro-gyroscope assembly sends the initialization state data without being affected by the external trigger source.

Figure 4-4 is the timing diagram of sending data by the external trigger source. The sampling frequency of the micro gyroscope group is 2000 Hz. The external trigger source shall not be higher than the sampling frequency. Latency is the delay of sending

CAD

5 Communication interface

5.1 Configurable parameters

The product communication protocol can be configured through the upper computer software, and the configurable parameters are shown in Table 5-1 below. Table 5-1 Product Configurable Parameters

Parameter	Configuration v	alue	Explain
Data frame	Standard data frame (II Extended Data Frame (I 'Angular Velocity + gyro temperature ' 'Angular Velocity + counter 'data 'Angular Velocity + time delay 'data 'Angular Velocity + counter + delay 'd 'Angular Velocity + gyro temperature = 0x99) 'Angular Velocity + gyro temperature (ID = 0 xA6) 'Angular Velocity + gyro temperature frame (ID = 0xA	See Section 5.3 for the specific data frame format, and you can choose one of them to send. See Table 5-2 for the relationship between data frame, baud rate and update rate.	
RS422 baud rate	460800bps 921600bps	Refer to Table 5-2 for baud rate limit conditions.	
RS422 check digit	NONE (no chec ODD (odd parit EVEN (even pari		
RS422 stop bit	1 bit 2 bits		
Low-pass filter bandwidth	-3dB frequency 16Hz 33Hz 66Hz 131Hz 262Hz	Group Delay (ms) 23.4 11.7 5.9 3.0 1.6	The filter setting is independent of the data update rate. The low-pass filter is a second-order IIR.
Data update rate	125Hz 250Hz 500Hz 1000Hz 2000Hz	Refer to Table 5-2 for data update rate restrictions.	
Restore factory settings	Restore factory set Restore factory settings	•	

Note: In this manual, 0x 90 and 90H both represent the hexadecimal number 90, and the corresponding decimal number is 144. Others are similar.

5.2 Communication interface

By using RS-422 standard communication interface to communicate with the

Old base map					
Base map				BS-GC20-400-D3EC	EX2.900.001SM
	Mark	Change order	Signature,	Page 19 No. 9 Page	

Tracing

Trace

CAD

product, the transmission baud rate and data update rate can be configured by the upper computer software. Table 5-2 shows the maximum data update rate corresponding to the transmission baud rate.

Table 5-2 Data Frame, Baud Rate and Maximum Data Update Rate					
Communication baud rate A data frame is sent	460800 bit/s	921600 bit/s			
Standard data frame (ID = $0x90$)	2000Hz	2000 Hz			
Extended Data Frame (ID = $0x92$)	2000 Hz	2000 Hz			
'Angular Velocity + gyro temperature 'data frame (ID = 0 xA0)	1000 Hz	2000 Hz			
'Angular Velocity + counter 'data frame ($ID = 0xA2$)	2000 Hz	2000 Hz			
'Angular Velocity + time delay 'data frame (ID = 0 xA4)	2000 Hz	2000 Hz			
'Angular Velocity + counter + delay 'data frame ($ID = 0 xA5$)	2000 Hz	2000 Hz			
'Angular Velocity + gyro temperature + counter 'data frame (ID = 0x99)	1000 Hz	2000 Hz			
'Angular Velocity + gyro temperature + time delay 'data frame (ID = 0 xA6)	1000 Hz	2000 Hz			
'Angular Velocity + gyro temperature + delay + counter 'data frame (ID = 0xA8)	1000 Hz	2000 Hz			

Table 5-2 Data Frame, Baud Rate and Maximum Data Update Rate

5.3 Data frame format

For the data sent by the micro-gyroscope combination in each cycle, the data format can refer to the corresponding data frame format configured in the operating instructions of the supporting upper computer, and all formats are shown in the following table.

Parameter name	Valid range	Byte	Scale	Remark
Frame header	90H	1		
X-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of th first byte is the sign bit. See Note 1 for the specific algorithm.
Y-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of th first byte is the sign bit. See Note 1 for the specific algorithm.

Table 5-3 Standard data frame format of micro gyroscope combination

Tracing

Trace

01d base map

map

Base

			BS-GC20-400-D3EC	EX2.900.001SM
Mark	Change order	Signature,	Page 19 No. 10 Page	

Diskette								
							/s, from high to low,	
CAD		Z-axis					t significant bit of the	
	-	angular	[-410, 410]] 3	2^{-14}	-	te is the sign bit. See	
		velocity				Note	e 1 for the specific	
							algorithm.	
		Gyro statu	s	1		All zero	os are normal. See 5.4	
		Checksum	n	1		CRC	C check, see note 4	
		,	Table 5-4 Extende	d Data Fra	me Format of	Micro Gyro	Assembly	
		Parameter	Valid range	Byte	Scale		Remark	
		name	vand range	Буш	Scale		Kelliark	
		Frame	0211	1				
		header	92H	1				
						Unit: (/s,	from high to low, the	
		X-axis	5 410 4101	2	- 14	most sign	nificant bit of the first	
		angular	[-410, 410]	3	2^{-14}	byte is the sign bit. See Note 1		
		velocity				for the	specific algorithm.	
						Unit: (/s,	from high to low, the	
		Y-axis	5 410 4103		- 14	most sign	nificant bit of the first	
		angular	[-410, 410]	3	2^{-14}	byte is the	e sign bit. See Note 1	
		velocity				for the	specific algorithm.	
						Unit: (/s,	from high to low, the	
		Z-axis					ificant bit of the first	
		angular	[-410, 410]	3	2^{-14}	byte is the	e sign bit. See Note 1	
		velocity				-	specific algorithm.	
		Gyro status		1		All zeros	s are normal. See 5.4	
		Reserved		1			Customized	
		Reserved		1			Customized	
		Reserved		1			Customized	
		Checksum		1		CRC	check, see note 4	
		Table 5-5 Data F	rame Format of "A	Angular Vel	ocity + Gyro	Temperature	" of Micro Gyro Assembly	
		Parameter	· Valid rang	e Byte	Scale		Remark	
		name		L Dyte	Scale			
Tracing	1	Frame head	er A0H	1				
_	1							
Trace	1							
11400	1							
d base map	1							
Base map				BS-G	C20-400-]	D3EC	EX2.900.001SM	
				<u>п</u>	age 19 No. 11	Dago		
	Mark	Change order	Signature,		age 19 100. 11	rage		

)iskette					Unit:	(/s, from high to low,		
					the mo	st significant bit of the		
CAD	X-axis angula	r [-410, 410]	3	2^{-14}	first b	yte is the sign bit. See		
	velocity			_		te 1 for the specific		
						algorithm.		
					Unit:	(/s, from high to low,		
I						st significant bit of the		
I	Y-axis angula	r [-410, 410]	3	2^{-14}		yte is the sign bit. See		
I	velocity		5	2		te 1 for the specific		
I					110	algorithm.		
					I Init.			
						(/s, from high to low,		
	Z-axis angula	r	2	a –14		st significant bit of the		
I	velocity	[-410, 410]	3	2^{-14}		yte is the sign bit. See		
					Not	te 1 for the specific		
ſ						algorithm.		
I	Gyro status		1			os are normal. See 5.4		
I						°C, from high to low,		
	X-axis gyro					st significant bit of the		
	temperature	[-128, 128]	2	2^{-8}	first b	yte is the sign bit. See		
I					Not	te 2 for the specific		
I						algorithm.		
I					Unit:	°C, from high to low,		
	Y-axis gyro				the mo	st significant bit of the		
		[-128, 128]	2	2^{-8}	first b	first byte is the sign bit. See		
I	temperature				Not	te 2 for the specific		
						algorithm.		
					Unit:	°C, from high to low,		
	Temperature o	of			the mo	st significant bit of the		
	Z-axis	[-128, 128]	2	2^{-8}	first b	yte is the sign bit. See		
I	gyroscope				Not	te 2 for the specific		
						algorithm.		
	Checksum		1		CR	C check, see note 4		
	Table 5-6 Dat	a Frame Format o	of "Angula	r Velocity + Co	ounter" of I	Micro Gyro Assembly		
racing	Parameter			-				
acing	name	Valid range	Byte	Scale		Remark		
_	Frame header	A2H	1					
Trace								
base map								
e map			BS-C	GC20-400-	D3EC	EX2.900.001SM		
ľ								

CAD

Unit: (/s, from high to low, the X-axis most significant bit of the first 2^{-14} [-410, 410] 3 angular byte is the sign bit. See Note 1 velocity for the specific algorithm. Unit: (/s, from high to low, the Y-axis most significant bit of the first angular [-410, 410] 3 2^{-14} byte is the sign bit. See Note 1 velocity for the specific algorithm. Unit: (/s, from high to low, the Z-axis most significant bit of the first 2^{-14} [-410, 410] angular 3 byte is the sign bit. See Note 1 velocity for the specific algorithm. 1 All zeros are normal. See 5.4 Gyro status Counter 1 Output value range: [0,255] Checksum 1 CRC check, see note 4

Table 5-7 Data Frame Format of "Angular Velocity + Delay" of Micro Gyro Assembly

Parameter	Valid range	Byte	Scale	Remark
Frame	A4H	1		
X-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
Y-axis angular velocity	ngular [-410, 410] 3 2 elocity		2^{-14}	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
Z-axis angular velocity			2 ⁻¹⁴	Unit: (/s, from high to low, the most significant bit of the first byte is the sign bit. See Note 1 for the specific algorithm.
Gyro status		1		All zeros are normal. See 5.4

Trace

01d base map

map

Mark

Change order

Base

BS-GC20-400-D3EC

EX2.900.001SM

Signature,

Page 19 No. 13 Page

. 13 Page

Diskette CAD		Delay		2			irst high and then low, gnificant bit of the first	
OID		Delay		2		byte is the sign bit. See Note 3 for		
	1	Checksum		1		-	check, see note 4	
		Table 5-8 I	Data frame format o		velocity + co nbination	ounter + delay	" of micro gyroscope	
		Parameter name	Valid range	Byte	Scale		Remark	
		Frame header	A5H	1				
		X-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 1 e specific algorithm.	
		Y-axis angular velocity	[-410, 410]	3	2^{-14}	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 1 e specific algorithm.	
		Z-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 1 e specific algorithm.	
		Gyro status		1		All zero	os are normal. See 5.4	
		Counter		1		Output	value range: [0,255]	
		Delay		2		the mos	first high and then low, t significant bit of the te is the sign bit. See e 3 for the specific algorithm.	
		Checksum		1		CRC	C check, see note 4	
Tracing		Table 5-9 Data	a frame format of "a		locity + gyro nbination	temperature -	+ counter" of micro gyro	
Trace	4	Parameter name	Valid range	Byte	Scale		Remark	
11400	1	Frame head	er 99H	1				
base map		<u>.</u>						
se map				BS-0	GC20-400)-D3EC	EX2.900.001SM	
	Mark	Change order		P	nge 19 No. 14			

Tracing		X-axis angular velocity	[-410, 410]	3	2^{-14}	-	nificant bit of the first ne sign bit. See Note 1
		Frame header	АбН	1			, from high to low, the
		Parameter name	Valid range	Byte	Scale		Remark
	Ta	ble 5-10 Data fra	ne format of "ar		ocity + gyro te mbination	mperature +	time delay" of micro gyro
		Checksum		1		-	check, see note 4
		Counter		1			value range: [0,255]
		Z-axis gyroscope	[-128, 128]	2	2 ⁻⁸	byte is the	nificant bit of the first ne sign bit. See Note 2 e specific algorithm.
		Temperature of				Unit: °C	, from high to low, the
		Y-axis gyro temperature	[-128, 128]	2	2^{-8}	most sig byte is th	, from high to low, the nificant bit of the first he sign bit. See Note 2
		X-axis gyro temperature	[-128, 128]	2	2 ⁻⁸	most sig byte is th for the	nificant bit of the first ne sign bit. See Note 2 e specific algorithm.
		Gyro status		1			, from high to low, the
		Z-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	most sig byte is th for the	, from high to low, the nificant bit of the first he sign bit. See Note 1 e specific algorithm.
		Y-axis angular velocity	[-410, 410]	3	2^{-14}	most sig byte is th	, from high to low, the nificant bit of the first he sign bit. See Note 1 e specific algorithm.
CAD		X-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	most sig byte is th	, from high to low, the nificant bit of the first he sign bit. See Note 1 e specific algorithm.

	4		1			TT '. //	
CAD		Y-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	most sig byte is th	, from high to low, the nificant bit of the first he sign bit. See Note 1 e specific algorithm.
		Z-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 1 e specific algorithm.
		Gyro status		1		All zero	os are normal. See 5.4
		X-axis gyro temperature	[-128, 128]	2	2 ⁻⁸	most sig byte is th	, from high to low, the nificant bit of the first he sign bit. See Note 2 e specific algorithm.
		Y-axis gyro temperature	[-128, 128]	2	2 ⁻⁸	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 2 e specific algorithm.
		Temperature of Z-axis gyroscope	[-128, 128]	2	2 ⁻⁸	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 2 e specific algorithm.
		Delay		2		the most first by	first high and then low, t significant bit of the te is the sign bit. See e 3 for the specific algorithm.
		Checksum		1		CRC	check, see note 4
	1		ne format of "ar		ocity + gyro ter combination	nperature +	delay + counter" of micro
		Parameter	Valid range	Byte	Scale	Remark	
		name	· · · · · · · · · · · · · · · · · · ·		Scale		Kemark
		name Frame header	A8H	1			Kemark
Tracing					2 ⁻¹⁴	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 1 e specific algorithm.
Tracing Trace 1d base map		Frame header X-axis angular	A8H	1		most sig byte is th	from high to low, the nificant bit of the first ne sign bit. See Note 1
Trace		Frame header X-axis angular	A8H	1		most sig byte is th for the	from high to low, the nificant bit of the first ne sign bit. See Note 1

Diskette					Unit: (/s.	from high to low, the	
CAD	Y-axis angular velocity	[-410, 410]	3	2^{-14}	most sig byte is th	nificant bit of the first he sign bit. See Note 1 e specific algorithm.	
	Z-axis angular velocity	[-410, 410]	3	2 ⁻¹⁴	most sig byte is th	from high to low, the nificant bit of the first he sign bit. See Note 1 e specific algorithm.	
	Gyro status		1		All zero	s are normal. See 5.4	
	X-axis gyro temperature	[-128, 128]	2	2 ⁻⁸	most sig byte is th	, from high to low, the nificant bit of the first ne sign bit. See Note 2 e specific algorithm.	
	Y-axis gyro temperature	[-128, 128]	2	2 ⁻⁸	most sig byte is th	from high to low, the nificant bit of the first he sign bit. See Note 2 e specific algorithm.	
	Temperature of Z-axis gyroscope	[-128, 128]	2	2-8	most sig byte is th	, from high to low, the nificant bit of the first he sign bit. See Note 2 e specific algorithm.	
	Delay		2		the mos first by	first high and then low, t significant bit of the te is the sign bit. See 23 for the specific algorithm.	
	Counter		1		Output value range: [0,255]		
	Checksum		1		CRC check, see note 4		
	Explain						
	1) Gyro angu	lar velocity ou	tput [°/s]	$= \frac{AR_1 \cdot 2^{16}}{2}$	$\frac{+AR_2 \cdot 2^8}{2^{14}}$	$\frac{-AR_3}{2}$ See Figure 5-1 for	
Tracing	data bit format;			.1			
Trace	Among AR_1 of each axis of the		hıgh eigl	nt bits of the	three bytes	for the angular velocity	
d base map							
ase map			BS-	BS-GC20-400-J		EX2.900.001SM	
	1						

Diskette				AP (Jutor	utting	tha	midd		aht h	vita o	f the	three	o hu	rtog f	or th	e ang	nulor	
CAD		1 .		2	-	C				gin t	ons o	or the	une	e by	tes I	or th	e ang	gulai	
		veloci	ty of ea					•											
				AR_3 (Dutpu	its the	e low	er eig	ght bi	ts of	the t	hree 1	bytes	for	the a	ngula	ır velo	ocity	
		of eac	h axis o	of the	gyro).													
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
		Figure 5-1 Converting the Gyro Angular Velocity Output to [°/s]																	
		2) Temperature output [°C] = $\frac{T_1 \cdot 2^8 + T_2}{2^8}$? See Figure 5-2 for data bit format.																	
		Among T_1 Outputs the upper eight bits of the two bytes for each axis temperature;																	
	T_2 Outputs the lower eight bits of the two bytes for each axis temperature.									ıre.									
	↓ T ₁								•			- T ₂							
		Bit	t 15 Bit 14	Bit 13		Bit 11	1	1		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		2	2 ⁷ 2 ⁶	25	24	2 ³	2 ²	2 ¹	2 ⁰	21	2 ⁻²	2 ^{.3}	2*4	2 ⁵	2.6	2-7	2-8		
						-		onvert	C	-	ature	Outpu	it to [°C]					
		3) Delay	^v time	e outp	out [u	[s]=	$T_1 \cdot 2$	$x^{8} + T_{2}$	2									
			W	here,	T ₁ is	the h	igh e	ight t	oits ir	the t	two ł	oytes	of th	e del	ay tii	ne oi	utput;		
					T ₂ ou	tputs	the l	ower	eight	bits	of th	e two	byte	es for	the	delay	time		
		4) CRC									0	,						
		Dfra															Appe		
		B Ior	the list	oi da	ta tat	oles a	nd Io	окир	Tunc	tion (codes	gene	erated	a iroi	m the	e poly	/nomi	al.	
		5.4	Self-cl	heck	fun	ctior	n and	l real	l-tim	e ou	tput	func	ctior	n of y	worl	king	statu	IS	
		Т	The pro	duct	has t	he fu	inctio	ons o	f self	-chec	king	and	real	time	outp	out of	f wor	king	
		status.	The da	ata fr	ame	conta	ins a	byte	indic	cating	g the	statu	s, an	d the	real	time	outp	ut of	
Tracing		produc	ct work	ting s	status	info	rmat	ion b	egins	after	the	powe	er-on	star	t is c	ompl	leted.	The	
		status	bits are	defi	ned in	n Tab	ole 5-	12.											
Trace	-					Tał	ole 5-	12 Pro	duct S	Status	Bit D	efinit	ions						
Old base map					Bit					Det	finitior	1							
Base map								BS	5-G(220-	400-	D3E	EC		ЕХ	(2.90	00.00	1SM	[
	Mari	Chart	ond			+			Раде	19 No	o. 18 ⁻	Page		-					
	Mark	Change	oraer		Signa	ιure,			- "60	-> 11									

7	0 = normal, standby
6	0 = normal, standby
5	0 = normal, 1 = abnormal external environment
4	0 = normal, $1 =$ three axes out of service condition
3	0 = normal, standby
2	0 = OK, $1 = Z$ axis out of use condition or error
1	0 = OK, $1 = Y$ axis out of use condition or error
0	0 = OK, $1 = X$ axis out of use condition or error

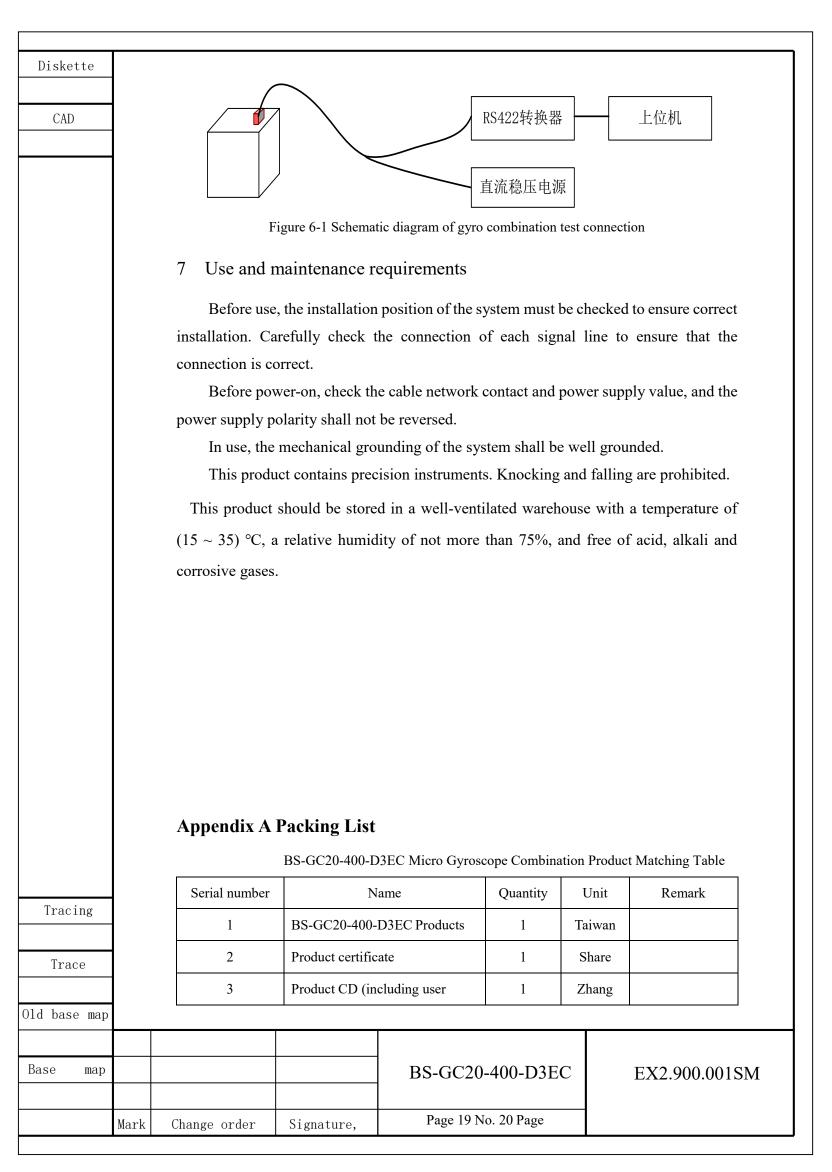
6 Functional testing

Diskette

CAD

Tracing

6.1 Test equipment and instrumentation required


The equipment and instruments required in the test include: DC regulated power supply, computer, turntable, test tooling and test cable.

6.2 Functional testing

The product is in a static state, and the DC regulated power supply is used to supply power to the product. The power supply requirements meet the requirements of 1.2.2. The specific connection mode of the product is shown in Figure 6-1. Data is received according to the communication protocol, and the angular velocity output of the product is received and displayed by the upper computer receiving software.

Rotate the gyroscope assembly in the positive direction around X, Y and Z respectively (if conditions permit, the turntable can be used for input, and if conditions do not permit, it can be rotated by hand), and the angular velocity output of the corresponding axis can be monitored as the positive angular rate. Rotate the product reversely around X, Y and Z respectively, and the angular velocity output of the corresponding axis can be monitored to be a negative angular velocity. It indicates that the angular velocity output polarity of the product is correct. The two angular rate values at the output of the product shall be in the vicinity of 0 deg/s under stationary conditions.

		Mark	Change order	Signature,	Page 19 No. 19 Page	
Base	map				BS-GC20-400-D3EC	EX2.900.001SM
01d bas	e map					
Tra	ce					

Diskette					
		software View, product			
CAD		instruction manual, software			
		manual, etc.)			
	4	Packing list	1	Share	
	5	Product packing box	1	А	

Appendix B CRC Lookup Table and Lookup Function

EX2.900.001SM

Trac	cing		Query table f	for B1 CRC8		
Tra 01d bas	ace		0x70,0x77,0x7E,	0x09,0x1C,0x1B,0 0x79,0x6C,0x6B,0	0x12,0x15,0x38,0x3F,0x36,0x31,0x24 0x62,0x65,0x48,0x4F,0x46,0x41,0x54 ,0xF2,0xF5,0xD8,0xDF,0xD6,0xD1,0	4,0x53,0x5A,0x5D,
Base	map				BS-GC20-400-D3EC	EX2.900.001
		Mark	Change order	Signature,	Page 19 No. 21 Page	

CAD

Tracing

0x90,0x97,0x9E,0x99,0x8C,0x8B,0x82,0x85,0xA8,0xAF,0xA6,0xA1,0xB4,0xB3,0xBA,0xBD, 0xC7,0xC0,0xC9,0xCE,0xDB,0xDC,0xD5,0xD2,0xFF,0xF8,0xF1,0xF6,0xE3,0xE4,0xED,0xEA, 0xB7,0xB0,0xB9,0xBE,0xAB,0xAC,0xA5,0xA2,0x8F,0x88,0x81,0x86,0x93,0x94,0x9D,0x9A, 0x27,0x20,0x29,0x2E,0x3B,0x3C,0x35,0x32,0x1F,0x18,0x11,0x16,0x03,0x04,0x0D,0x0A, 0x57,0x50,0x59,0x5E,0x4B,0x4C,0x45,0x42,0x6F,0x68,0x61,0x66,0x73,0x74,0x7D,0x7A, 0x89,0x8E,0x87,0x80,0x95,0x92,0x9B,0x9C,0xB1,0xB6,0xBF,0xB8,0xAD,0xAA,0xA3,0xA4, 0xF9,0xFE,0xF7,0xF0,0xE5,0xE2,0xEB,0xEC,0xC1,0xC6,0xCF,0xC8,0xDD,0xDA,0xD3,0xD4, 0x69,0x6E,0x67,0x60,0x75,0x72,0x7B,0x7C,0x51,0x56,0x5F,0x58,0x4D,0x4A,0x43,0x44, 0x19,0x1E,0x17,0x10,0x05,0x02,0x0B,0x0C,0x21,0x26,0x2F,0x28,0x3D,0x3A,0x33,0x34, 0x4E,0x49,0x40,0x47,0x52,0x55,0x5C,0x5B,0x76,0x71,0x78,0x7F,0x6A,0x6D,0x64,0x63, 0x3E,0x39,0x30,0x37,0x22,0x25,0x2C,0x2B,0x06,0x01,0x08,0x0F,0x1A,0x1D,0x14,0x13, 0xAE,0xA9,0xA0,0xA7,0xB2,0xB5,0xBC,0xBB,0x96,0x91,0x98,0x9F,0x8A,0x8D,0x84,0x83, 0xDE,0xD9,0xD0,0xD7,0xC2,0xC5,0xCC,0xCB,0xE6,0xE1,0xE8,0xEF,0xFA,0xFD,0xF4,0xF3 };

B2 is a table lookup function that returns the calculated CRC value

uint8_t CRC8(uint8_t *ptr, uint8_t len)

{

}

uint8_t crc = 0x00; while (len--)
{
 crc = crc8_table[crc ^ *ptr++];
}
return (crc);

Uint8 t is of type byte.

Trace					
Old base map					
Base map				BS-GC20-400-D3EC	EX2.900.001SM
Base map				BS-0C20-400-D3EC	EA2.900.0015W
	Mark	Change order	Signature,	Page 19 No. 22 Page	