V 1.01 of optical fiber integrated navigation system.

BS-FN300F-M-D6EC

Product characteristics

Gyroscope measuring range: 500 ~ 2000 °/s optional

2 °/H gyroscope bias stability (Allan variance)

Acceleration range: 16g

 \bigwedge Zero bias stability (Allan variance) for acceleration of 0.1 mg

Field of application

UAVNavigation

Vehicle & Robot Navigation

AUV &ROV

1. Product overview

The fiber-optic integrated navigation system BS-FN300F-M-D6EC is composed of a three-axis closed-loop fiber-optic gyroscope, an accelerometer and a navigation board card with high cost performance, and is realized through multi-sensor fusion and navigation calculation algorithm to meet the requirements of accurate measurement of attitude, heading, position and other information in the application fields of medium and high precision mobile measurement systems, medium and large unmanned aerial vehicles and the like.

2. Functions and indicators

2.1 Main functions

The system has inertial/satellite integrated navigation mode and pure inertial mode.

In the inertial/satellite integrated navigation mode, the satellite positioning information received by the internal GNSS receiver can be used for integrated navigation, and the pitch, roll, course, position, speed, time and other information of the carrier can be output; After the signal is lost, the position, velocity and attitude calculated by inertia are output, in which the pitch and roll are required to be accurate, the course keeping function is available in a short time, and the meter-level positioning accuracy is available in a short time.

After the pure inertial mode (i.e., GPS fusion has never been performed after power-on, and if it loses lock again after fusion, it belongs to the integrated navigation mode) is started, it has accurate attitude measurement function, can output the pitch and roll heading, and the pure inertial mode can find the north statically.

Project	Test conditions	Indicators
	GNSS Valid, Single Point	1.5m
	GNSS Valid, RT K	2cm+1ppm
	Down in active having set	80m/5min(CEP)
Desitioning accumant	Pure inertial norizontal	500m/10min(CEP)
Positioning accuracy		1.5nm/30min(CEP)
	Airspeed combination	
	horizontal positioning	0.8nm/30min (CEP)
	maintenance 2	
	Single antenna (RMS)	0.1°③
	Dual Antenna (RMS)	$0.2 \circ /L (L = baseline length) (RMS)$
Heading accuracy	Course Keeping (RMS)	0.2°/30min(RMS), 0.5°/h
		0.2 ° SecL, double position alignment for 15
	Self-north seeking	min
	accuracy (KMS)	1.0 ° SecL, single position alignment 5-10

2.2 Performance indicators

		min	
	GNSS is valid	0.02°(RMS)	
Attitude accuracy	Attitude hold (GNSS failure)	0.2°/30min(RMS), 0.5°/n(RMS)	
Speed accuracy	GNSS valid, single point L1/L2	0.1m/s(RMS)	
0	Measuring range	±400°/s	
Gyroscope	Zero bias stability	≤0.3°/h	
	Measuring range	±20g	
Accelerometer	Zero bias stability	≤100µg	
	Voltage	9-36V DC	
D1 ' 1 1' '	Power consumption	$\leq 12W$ (steady state)	
and electrical	Interface	2 RS 232,1 RS 422, 1-channel PPS (LVTTL/422 level)	
characteristics	Size	92.0 mm × 92.0 mm × 90.0 mm (L, W, H)	
	Weight	<1.0kg	
	Operating temperature	-40°C~+60°C	
	Storage temperature	-45°C~+70°C	
Environmental	Vibration	$5 \sim 2000$ Hz, 6.06 G (with shock absorber)	
characteristics	Impact	30g, 11 ms (with shock)	
	Life span	> 15 years	
	Continuous working time	>24h	

Note:

① The alignment is valid;

② For airborne use, there is a turning maneuver before the airspeed combination. The test takes the flight speed of 150km/H as an example, and the wind field is stable;

③ On-board conditions, need to be mobile;

Table 1 System Performance Requirements

3. How it works

3.1 Product composition

Figure 1 System composition

3.2. Rationale

The inertial measurement unit consists of three accelerometers and three optical fiber gyroscopes and is used for measuring the acceleration and the angular velocity of a carrier and sending the information to the information processing circuit; and the information processing circuit performs navigation settlement by using the acceleration and the angular velocity measured by the inertial measurement unit and simultaneously receives satellite navigation information of a satellite receiver as a reference to perform combined navigation, The navigation error of the inertial navigation is corrected, and the navigation information is output through the information interface unit.

4. Instructions for use

4.1 Overall dimensions

The inertial measurement unit and the satellite receiver are integrated in the inertial navigation system. The outline of the system is shown in the figure below. The overall dimensions of the

system are: 92.0 mm \times 92.0 mm \times 90.0 mm (length \times width \times height).

4.2 Electrical interface

The system has 1 external connector:

A) power supply and communication interface X1;

One end of d) 1 cable is connected to X1, and the other end is divided into a red and black clamp for power supply and 3 serial ports, which are COM1 ~ COM3, wherein COM1 is RS422, COM2 and COM3 are RS232. COM1 can be used to send working mode instructions;

Connection Point Connecti 1(J599/26FD35PHA)		Connection P	n Point 2		Terminal	number	
Plug wire Mark Code	Terminal number	Plug wire Mark Code	Terminal number		definition (Connection 1)	on point	Remark
X1	30	CO) (4	3		COM4_232	2R	Main processor
X1	16	COM4 (1.129)	2		COM4_232	2T	program upgrade
X1	23	(L138) 5		GND		port, RS232	
X1	20		1	3	COM2_ 422R+	COM2_ 232R	Inertial navigation serial port COM2
X1	2	COM2	2		COM2_ 422R-		422/232 available Default 422

X1	19		3		COM2_ 422T+		
X1	1		4	2	COM2_	COM2_	
V1	22	-	5	5	4221-	232T	
X1 V1	23		1	3		COMI	
ΛΙ	21		1	5	422P+		
V1		-	2		COM1	232K	
	3		2		422R		Inertial navigation
V1		COMI			422R-		serial port COM1
ΛΙ	17	CONT	3		422T+		422/232 available
X1		-			4221+	COMI	Default 422
	18		4	2	422T	232T	
V1	24	-	5	5	4221-	CND	
	24		5	5			
AI	35		3			uide COM	TT'1 1 1 1
V1		Cuide COM1			I_KAD	COM 1	Ulde board serial
AI	36	Guide COMT	2		TYD		
V1	24	-	5				232
	5		0		COM2 PYD		In actival an activation
	22	COM2	3		COM3_TXD		sorial part COM2
	24	COIVIS	2		GND		
	54	Wei Dee	5		UND		232
AI	4	EVENT			Throw the line		Guard guide board
V1	24						EVENT
	6						Deres and
XI XI	0	24V_2			Red alligate	or clip	Power supply
	1				Red alligat	or clip	nput
XI	8	24VGND			Black allig	ator clip	ground
X1	11	ETHER_	Oran	ge	ETHER_T	X_P	
		TX_P	and v	vhite			
X1	05	ETHER_	Orai	nge	ETHER_T	X_N	
	25	TX_N					
X1		ETHER_	Green	n and	ETHER_R	X_P	Network port
	9	RX_P	white	•			
X1	10	ETHER_	Gree	en	ETHER_R	X_N	
	10	RX_N					
X1	12	PPS+_1			Throw the	line	PPS (default input)

X1	26	PPS1	Throw the line	
X1	14	DI1+	Throw the line	The first road
X1	28	DI1-	Throw the line	odometer
X1	13	DI2+	Throw the line	The second way
X1	27	DI2-	Throw the line	odometer
X1	15	DO1+	Throw the line	
X1	29	DO1-	Throw the line	Output
X1	37	CAN1H	Throw the line	
X1	31	CAN1L	Throw the line	First way CAN
X1	32	CAN2H	Throw the line	
X1	33	CAN2L	Throw the line	Second way CAN

Table 2 X2 Connector Point Definitions

4.3 Instructions for use

Workflow of 4.3.1 system

Inertial navigation system includes two work processes, one is integrated navigation process, the other is pure inertial navigation process.

4.3.1.1 startup prompt message

Connect the cable, power up the system, and monitor the COM1 interface information through the serial port debugging tool of the test computer. After the interface displays "Please enter NaviMode within 20s!", the serial port debugging tool can be used to send workflow instructions to the COM1 interface. "# moddgi" is to enter the integrated navigation work instruction; "# modins" is to enter the pure inertial navigation work instruction. If no instruction is sent within 20s, the system will automatically enter the internally saved work flow after 20s.

4.3.1.2 integrated navigation proces

After entering the integrated navigation process, first bind the satellite information. If the satellite is not positioned, it is in the state of waiting for the satellite information. When the satellite information is valid, it enters the alignment state. The alignment time is 1 minute. During the alignment period, the inertial navigation is required to be static. After the alignment is completed, the inertial navigation can move and the system is in the integrated navigation state.

4.3.1.3 pure inertial navigation proces

After entering the pure inertial navigation process, first carry out rough alignment for 1min. If the satellite information is valid, bind the satellite information and carry out fine alignment for 1500s. If there is no satellite information, the stationary base must be aligned for 1500s. After the alignment is completed, turn to the pure inertial navigation state, and the inertial navigation can move.

4.3.2 system configuration instruction

4.3.2.1 Configuration Scheme and Storage

The inertial navigation system provides three external serial ports (configuration No.: com1, com2, com3) and one internal storage channel (configuration No.: file). All three serial ports can be configured. The function allocation and relevant configuration of each serial port are shown in the following table.

Config uratio n numbe r	Enter the project	Output items	Default
COM1	1.workingmodeinstructionandflowcontrol instruction;2.COM1, COM2, COM3baud rate configuration;3. COM1, COM2, COM3protocol and update rateconfiguration;4.Storethefileprotocol configuration.	 1.SNCNAVPVTA/SNCNAVPVTB; 2.INSPVASA/INSPVASB; 3.BDFPD; 4.RAWIMUSB (fixed 200Hz SPAN-ISA-100C format); 5. configure prompt information; 	RS422; 460800bps; Output: BDFPD;
COM2	Same as COM1	Same as COM1	RS422; 460800bps; Output: None
COM3	Same as COM1	Same as COM1	RS232; 460800bps; Output: None
file	The system automatically saves the storage information according to the user's configuration. The name of the saved data file is RECORDX. Txt, where X is the file number. When a configuration query is made, the current latest file name is displayed.	 There will be a fixed SNCPOSTB protocol and it cannot be cancelled. This protocol is data backup. When the system is powered on, the network port is inserted into the computer to store and export data. 	None

Table 3 Function Distribution of Serial Port of Inertial

Navigation System

After the system is powered on and the startup information is displayed on the serial port, you can input the commands such as COM1, COM2 and COM3 serial port baud rate configuration, serial port protocol and update rate setting. If each command is output successfully, it will return to "cmd OK" "or" < OK ", otherwise it will display" cmd error "" or "< ERR". After the input is completed, type "saveconfig" to save the current configuration. The current configuration will be called automatically after the next restart. If the command is not input, the serial port configuration will be restored to the last saved configuration after the next restart. 4.3.2.2 configuration query

Enter the "log loglist" "command through the inertial navigation serial port to list all the configurations of COM1, COM2 and COM3, including the following contents:

a. Serial port number, serial port baud rate, serial port protocol and update rate;

b. Open state of function module: including zero-speed correction state and smooth processing state, enable when open and disable when closed; carrier type;

c. Internal storage status information: including the file name of the last file, remaining space, etc.;

d. Initial binding longitude and latitude;

e. System number and date of manufacture;

f. Software version number: including pre-processing software version number and navigation software version number;

g. Operating mode: including integrated navigation (DGI) and pure inertial navigation (INS).

4.3.2.3 baud rate setting

In this mode, enter the following command to enter the serial port baud rate configuration:

com comX BAUDRATA

Where X is $1 \sim 3$ and BAUDRATA is the baud rate in bps.

For example, set the baud rate of the COM2 port to 460800 bps, and input the following command: com com2 460800

4.3.2.4 update rate configuration

Configure the protocols of COM1 ~ COM3 and SNCNAVPVTA/B, BDFPD, INSPVASA/B of memory file through the inertial navigation serial port. The configuration commands are as follows: log comX/file LOG ontime updataTime

Where comX can be the configuration number of com1 to com3, file is the configuration number of the memory interface; updataTime represents the update time, which can be 5 (2 Hz), 1 (1 Hz), 0.2 (5 Hz), 0.1 (10 Hz), 0.01 (20 Hz) and other periods that can be divided by 200 Hz, and the unit is s. LOG indicates the protocol name, which may be inspvasa, inspvasb, bdfpd, etc.

For example, if you want to configure the COM2 port to output 10Hz SNCNAVPVTA data, you can input the following commands through the inertial navigation serial port:

log com2 sncnavpvta ontime 0.1

If 10Hz bdfpd data needs to be output at the same time on COM2, the following commands can be input through the inertial navigation serial port:

log com2 bdfpd ontime 0.1

For another example, to store 1 Hz inspvasa protocol data in the ins internal memory, enter the following command through the ins serial port:

log file inspvasa ontime 1

If you want to shut down a protocol, the configuration command is as follows:

log comX/file LOG off

Configure the rawimusb protocol of the COM1 ~ COM3 ports and the memory file port through the inertial navigation serial port. The configuration commands are as follows:

log comX/file rawimusb onchanged

If you want to disable the serial port rawimusb protocol, the configuration command is as follows: log comX/file rawimusb off

If you want to close all protocols of the serial port, the configuration command is as follows: unlogall comX/file

It should be noted that increasing the update rate or outputting several protocols at the same time will increase the amount of data sent by the serial port. Before use, it is necessary to configure the appropriate baud rate, otherwise it may cause data loss. In general, the larger the amount of data, the higher the baud rate required.

Longitude and latitude configuration of 4.3.2.5 initial values

Initial longitude and latitude configuration, the configuration command is:

initialpos LONGITUDE LATILUDE

Where LONGITUDE and LATITUDE are configured local longitude and latitude values in degrees.

4.3.2.6 function module configuration

Functional modules with open configuration mainly include zero velocity correction and output position smoothing.

4.3.2.6.1 "Zero Velocity Trim" Configuration

The zero-speed correction function mainly means that the inertial navigation system detects the sensitive information, and if the inertial navigation system is judged to be zero-speed, the corresponding correction is carried out.

In the integrated navigation process of this product, the "zero velocity correction" is enabled by

default. If the satellite information is invalid for a long time in the integrated navigation state, and the user wants to get the pure inertial navigation information, it is recommended to close the zero velocity correction mode.

The zero speed correction configuration instructions are as follows:

inszupt switch

The switch value is either disable or enable, where disable turns the feature off and enable turns the feature on.

4.3.2.6.2 Position Output Smoothing configuration

The position information in the INSPVASA and GPFPD protocols is the inertial navigation position information. In order to obtain more smooth position information, the position output smoothing function is added to the navigation software, and the position noise after smoothing is smaller. In the integrated navigation process of this product, "Position Output Smoothing" is off by default. In order to facilitate the user's selection, this function can be configured. The configuration instructions are as follows:

possmooth SWITCH

The switch values are disable and enable, where disable means to turn off the function and enable means to turn on the function.

4.3.2.7 carrier type configuration

According to the different carriers installed in the inertial navigation system, the carrier type configuration is required, and different algorithm processing is carried out in the system according to different carrier types.

The configuration instructions are as follows:

carrier vehicle/ship/air

They are vehicle-mounted, ship-mounted and airborne in turn.

After the configuration is completed, you need to enter the save command save config, and then hard start or enter the # reset command. The carrier type configuration will be valid after startup. The inertial navigation system does not support the current configuration and current use, and must be restarted.

After the carrier type is configured as the vehicle-mounted type, the inertial navigation system is required to be installed and fixed on the vehicle, and the heading of the inertial navigation system is consistent with the direction of the vehicle head, with an error of not more than 10 degrees.

4.3.2.8 GNSS antenna mast arm configuration

According to the relative installation relationship between the antenna and the inertial navigation system, it is necessary to configure the antenna rod arm. The lever arm value between the

configuration inertial navigation and the antenna must be accurate to millimeters (mm) during measurement. Any measurement error of the lever arm will directly enter the position error output by the inertial navigation. During installation and use, the inertial navigation should be as close as possible to the main antenna, especially in the horizontal position. The command is required to be completed before the alignment of the inertial navigation static base or during the alignment of the inertial navigation static base and before the alignment of the dynamic base. Once the configuration is complete, it needs to be saved via "saveconfig".

The configurations include a master antenna rod arm configuration and a slave antenna rod arm configuration.

The main antenna configuration instructions are as follows:

setimutoantoffset1 armX army armZ

The slave antenna configuration instructions are as follows:

setimutoantoffset2 armX army armZ

Where armX, armY, and armZ are the configured lever arm values, in meters, representing the components of the vector from the inertial navigation to the antenna phase center in the inertial navigation carrier coordinate system, which is selected as the upper right front (XYZ). For the example in Figure 4, armX and armY should be negative, and armZ should be positive.

Figure 4 Schematic diagram of antenna rod arm

4.3.2.9 Output Lever Arm Settings

The default value for the product output lever arm configuration is [0,0,0] (upper right front), which is the position and velocity values at the output ins. If the position and speed of the user test point need to be output, the output lever arm should be set according to the relative installation relationship between the test point and the inertial navigation.

The lever arm value between the configuration inertial navigation and the test point must be accurate to millimeters (mm) during measurement, and any lever arm measurement error will directly enter the position error output by the inertial navigation. The command is required to be completed before the alignment of the inertial navigation static base or during the alignment of the inertial navigation static base and before the alignment of the dynamic base. Once the configuration is complete, it needs to be saved via "saveconfig".

The output lever arm configuration commands are as follows:

setimutosensoroffset armX armY armZ

Where armX, armY, and armZ are the configured lever arm values, in meters, representing the components of the vector from the inertial navigation to the test point in the inertial navigation carrier coordinate system, which is selected as the right front top (XYZ). For the example in Figure 5, armY and armZ should be positive.

Fig. 5 Schematic diagram of output lever arm

Setting of mounting angle of 4.3.2.14

The attitude and heading information output by the product are Euler angles of the product coordinate system relative to the geographic coordinate system. The angle installation relationship between the product and the carrier coordinate system is the installation angle, and the default configuration value is [0, 0, 0] (pitch, heading, roll), that is, the product coordinate system is considered to coincide with the installation carrier coordinate system. If there is an installation angle when the product is installed on the carrier, and the Euler angle of the carrier coordinate system relative to the geographic coordinate system needs to be output by the product, the installation angle should be set according to the relative installation relationship between the product and the carrier. Mounting angle configuration instructions are as follows:

vehiclebodyrotation angleX angleZ angleY

Where angleX, angleZ and angleY are the configured installation angle values, in degrees, representing the angles from the carrier coordinate system to the integrated navigation system coordinate system, in the order of pitch, course and roll.

Note: This function will cause the output angular velocity, acceleration and attitude to change with the setting.

4.3.3 protocol format

The output protocols supported by the product are shown in the following table.

Serial	Data protocol	Type of	Output type	Support
numb	name	agreement		interface
er				
1	SNCNAVPVTB	Binary	ontime	COM1-COM3
2	SNCNAVPVTA	ASCII	ontime	COM1-COM3
3	BDFPD	ASCII	ontime	COM1-COM3
4	INSPVASA	ASCII	ontime	COM1-COM3
5	INSPVASB	Binary	ontime	COM1-COM3
6	RAWIMUSB	Binary	onchanged	COM1-COM3

Table 4. Output Data Protocol Description

4.3.3.1 SNCNAVPVTB

Examples of inertial navigation configuration commands:

log com2 sncnavpvtb ontime 1

Byte sequence number	Data	Data type	Number of bytes occupied	Explain
0	0x55	unsigned char	1	Fixed 0x55
1	0xAA	unsigned char	1	Fix 0 xAA
2	Class	unsigned char	1	Fix 0 x00
3	ID	unsigned char	1	Fix 0 x00
4-5	Frame length	unsigned short	2	
6-7	Frame count	unsigned short	2	Adds 1 for each frame sent
8-9	Week (GPS hour)	unsigned short	2	The unit is the week.
10-17	Cycles per second (GPS hours)	double	8	In S
18-21	Heading	int	4	Units are in degrees LSB=0.0001°
22-25	Pitch	int	4	Units are in degrees LSB=0.0001°
26-29	Roll	int	4	Units are in degrees LSB=0.0001°
30-33	East speed	int	4	Units are in degrees LSB=0.0001 m/s

34-37	North speed	int	4	Units are in degrees LSB=0.0001 m/s
38-41	Sky speed	int	4	Units are in degrees LSB=0.0001 m/s
42-45	Latitude	int	4	Units are in degrees LSB=0.0000001°
46-49	Longitude	int	4	Units are in degrees LSB=0.0000001°
50-53	Height	int	4	The unit is meter LSB=0.0001m
54-57	X-axis angular velocity (Right-front-up)	int	4	Units are in degrees LSB=0.000001°/s
58-61	Y-axis angular velocity (Right-front-up)	int	4	Units are degrees/second LSB=0.000001°/s
62-65	Z-axis angular velocity (Right-front-up)	int	4	Units are degrees/second LSB=0.000001°/s
66-69	X-axis acceleration (Right-front-up)	int	4	In m/S2 LSB=0.0000001 m/s2
70-73	Y-axis acceleration (Right-front-up)	int	4	In m/S2 LSB=0.0000001 m/s2
74-77	Z-axis acceleration (Right-front-up)	int	4	In m/S2 LSB=0.0000001 m/s2
78	Number of main antenna positioning star	unsigned char	1	The unit is piece LSB=1
79	Position the	unsigned char	1	The unit is piece

	number of stars			LSB=1
	from the			
	antenna			
				Bit7-Bit0
				0 x00: Standby
20	Navigation	unsigned show	1	0 x10: coarse alignment
80	status word	unsigned char	1	0 x20: fine alignment
				0x30: integrated navigation
				0x31: pure inertial navigation
				Bit2-Bit0
				= 0: Invalid
				= 1: single point positioning
				= 2: pseudorange differential
				= 3: RTK differential
				positioning
				Bit 3: Position and speed data
	GNSS status word	unsigned short		are valid
				= 0: Invalid
81-82			2	= 1: Valid
				Bit 4: GNSS dual-antenna
				heading is valid
				= 0: Invalid
				= 1: Valid
				Bit5: GPS data is valid
				= 0: Invalid
				= 1: Valid
				Bit 6-Bit 15: Reserved as 0
				Bit 0: X-axis gyro fault word
				= 0: normal
				= 1: Fault
				Bit 1: Y-axis gyro fault word
				= 0: normal
83-84	Fault status	unsigned short	2	= 1: Fault
	word			Bit2: Z-axis gyro fault word
				= 0: normal
				= 1: Fault
				Bit3: X-axis acceleration fault
				word

				= 0: normal
				= 1: Fault
				Bit 4: Y-axis acceleration fault
				word
				= 0: normal
				= 1: Fault
				Bit5: Z-axis acceleration fault
				word
				= 0: normal
				= 1: Fault
				Bit 6: GNSS board hardware
				fault word
				= 0: normal
				= 1: Fault
				Bit 7-Bit 15: Reserved as 0
85-92	Reserved	-	8	-
				Accumulate 2-92 to lower 16
93-94	Checksum	-	2	bits

Table 5 sncnavpvtb format

4.3.3.2 SNCNAVPVTA

Examples of inertial navigation configuration commands:

log com2 gpfpd ontime 1

Components of the Agreement		Examples	Explain
Frame header	Protocol header	\$SNCNAVPVTA	Message type
	Week (GPS hour)	2203	GPS hour weeks
	Seconds (GPS hours)	122515.000	Seconds in GPS hour week, three decimal places
	Heading angle	ууу.ууу	3 digits after the decimal point in $^{\circ}$
Content	Pitch Angle	pp.ppp	3 digits after the decimal point in $^{\circ}$
	Roll Angle	rr.rrr	3 digits after the decimal point in $^\circ$
	Longitude	111.1111111	7 digits after the decimal point in $^\circ$
	Latitude	111.1111111	7 digits after the decimal point in $^\circ$
	Height	hhh.hhh	Height value, m

East speed	XXX.XXX	3 digits after the decimal point, in m/s
North speed	XXX.XXX	3 digits after the decimal point, in m/s
Sky speed	XXX.XX	3 digits after the decimal point, in m/s
X angular velocity (front-up-right)	XX.XXX	3 digits after the decimal point, in °/H
Y Angular Velocity (Front-Top-Right)	XX.XXX	3 digits after the decimal point, in $^{\circ}/H$
Z Angular Velocity (Front-Top-Right)	XX.XXX	3 digits after the decimal point, in °/H
X Acceleration (Front-Top-Right)	XX.XXX	3 digits after the decimal point in $$m/s^{\ \ }2$$
Y Acceleration (Front-Top-Right)	XX.XXX	3 digits after the decimal point in $$\rm m/s^{\ \wedge}2$$
Z Acceleration (Front-Up-Right)	XX.XXX	3 digits after the decimal point in $$\rm m/s^{\ \wedge}2$$
Navigation status word		Bit7-Bit0 0 x00: Standby 0 x10: coarse alignment 0 x20: fine alignment 0x30: integrated navigation 0x31: pure inertial navigation
GNSS status word		Bit2-Bit0 = 0: Invalid = 1: single point positioning = 2: pseudorange differential = 3: RTK differential positioning Bit 3: Position and speed data are valid = 0: Invalid = 1: Valid Bit 4: GNSS dual-antenna heading is valid = 0: Invalid = 1: Valid Bit5: GPS data is valid

			= 0: Invalid
			= 1: Valid
			Bit 6-Bit 15: Reserved as 0
			Bit 0: X-axis gyro fault word
			= 0: normal
			= 1: Fault
			Bit 1: Y-axis gyro fault word
			= 0: normal
			= 1: Fault
			Bit2: Z-axis gyro fault word
			= 0: normal
			= 1: Fault
		atus word	Bit3: X-axis acceleration fault word
			= 0: normal
	Foult status word		= 1: Fault
	Fault status word		Bit 4: Y-axis acceleration fault
			word
			= 0: normal
			= 1: Fault
			Bit5: Z-axis acceleration fault word
			= 0: normal
			= 1: Fault
			Bit 6: GNSS board hardware fault
			word
			= 0: normal
			= 1: Fault
			Bit 7-Bit 15: Reserved as 0
		*24	Xor each byte from ' \$' (but not \$) to
	Checksum	*24	'*' (but not *)
Frame trailer	End of agreement	\r\n	Line feed and carriage return

Table 6 SNCNAVPVTA format

4.3.3.3 BDFPD

Examples of inertial navigation configuration commands:

log com2 bdfpd ontime 1

Ins output example

\$BDFPD,2105,355160.246,90.96184,-1.14427,1.01899,39.71066564,116.11209956,46.076,-0.00

37,-0.0065,0.0147,20,16,0*68

Seria	Name	Meaning	Data type	Unit
1	\$BDFPD	Format header	—	
2	GPSWeek	Current week number (GMT) since January 6, 1980	Integer	
3	GPS cycles	GPS cycles per second	Floating point	s
4	Yaw Angle	Yaw 0 ~ 360 degrees, clockwise	Floating-point	Degr
5	Pitch Angle	Pitch angle -90 ° \sim 90 °	Floating-point	Degr
6	Roll Angle	Roll angle -180 $^{\circ} \sim$ 180 $^{\circ}$	Floating-point	Degr
7	Latitude	Inertial navigation output latitude -90 ° \sim 90 °	Floating-point	Degr
8	Longitude	Inertial navigation output longitude -180 ° \sim 180 °	Floating-point	Degr
9	Height	Height of inertial navigation output	Floating-point	m
10	East speed	Inertial navigation output east speed	Floating-point	m/s
11	North speed	Inertial navigation output north speed	Floating-point	m/s
12	Sky speed	Inertial navigation outputs sky speed	Floating-point	m/s
13	NSV1	Number of satellites for antenna 1	Integer	А
14	NSV2	Number of satellites for antenna 2	Integer	А
15	Positioning	Pos type in bestpos	Integer	
16	Directional	Pos type in heading	Integer	
17	Check code	Check code	Hexadecimal	
18	<cr><lf></lf></cr>	Fix the tail of the package		

Table 7 BDFPD format

4.3.3.4 short message protocol head

There are two types of short header protocol headers, one is ASCII and the other is binary.

Serial	Name	Data type	Meaning
1	%	Char	Fixed to '%'
2	Message name	Char	Message type for this protocol
3	GPS Week	Ushort	GPS weeks (GPS hours)
4	GPS cycles per	float	GPS Week Second (GPS Hour)

Table 8 ASCII Short Header

Seri	Name	Data type	Meaning	Binary	Binar
1	Sync Byte	Char	Fix Hex 0xAA	1	0

Seri	Name	Data type	Meaning	Binary	Binar
2	Sync Byte	Char	Fix Hex 0x44	1	1
3	Sync Byte	Char	Fix Hex 0x13	1	2
4	Message	Uchar	Message length, excluding header and	2	3
5	Message ID	Ushort	Message ID	2	4
6	GPS Week	Ushort	GPS weeks (GPS hours)	4	6
7	GPS cycles	Int	GPS cycle second (GPS hour,	4	8

Table 9 Binary short header

4.3.3.5 32-bit CRC check

The C language code history is as follows.

```
#define CRC32_POLYNOMIAL 0xEDB88320L
```

/* _____

Calculate a CRC value to be used by CRC calculation functions.

```
----- */
unsigned long CRC32Value(int i)
{
int j;
unsigned long ulCRC;
ulCRC= i;
for (j = 8; j > 0; j - -)
{
if (ulCRC&1)
ulCRC=(ulCRC>>1) ^ CRC32_POLYNOMIAL;
else
ulCRC >>= 1;
}
return ulCRC;
}
/* _____
Calculates the CRC-32 of a block of data all at once
ulCount - Number of bytes in the data block
ucBuffer - Data block
----- */
```

```
unsigned long CalculateBlockCRC32( unsigned long ulCount, unsigned char*ucBuffer)
{
    unsigned long ulTemp1;
    unsigned long ulTemp2;
    unsigned long ulCRC= 0;
    while ( ulCount-- != 0 )
    {
        ulTemp1 = ( ulCRC>>8 ) &0x00FFFFFL;
        ulTemp2 = CRC32Value( ((int) ulCRC^ *ucBuffer++ ) &0xFF );
        ulCRC= ulTemp1 ^ ulTemp2;
    }
    return( ulCRC );
    }
    4.3.3.6 INSPVAS
```

This command is a short message protocol output

Examples of inertial navigation configuration commands:

log com2 inspvasa ontime 1 (ASCII)

Log com2 inspvasb ontime 1 (binary)

ASCII example

\$INS,091202,083559.00,A,4717.11437,N,00833.91522,E,499.6,M,0.004,77.52,0.02,0.00,0.00,327

.19,001.69,000.00,0.00,0.00, 0.00,E*64

Components of the Agreement		Examples	Explain
Frame header	Protocol header	\$INS	Message type
	UTC date	ddmmyy	Date, month, year format
	UTC time	hhmmss.ss	Hour, minute and second format
	Data status	A	A = valid, V = invalid
	Latitude	ddmm.mmmmm	Degree division format
Content	Latitude direction	Ν	N or S (north or south)
	Longitude	dddmm.mmmmm	Degree division format
	Longitude direction	E	E or W (East or West)
	Height of antenna above sea level	499.6	

	Height unit	М	M is the unit of meter
	Ground speed	0.004	
	Ground heading	77.52	Degrees, true north as reference datum
	X-axis speed	0.02	km/h
	Y-axis speed	-0.07	km/h
	Z-axis speed	0.00	km/h
	Pitch Angle	001.69	Degrees, -90 \sim 90 $^{\circ}$
	Heading angle	127.19	Degrees, -180 to 180 °
	Roll Angle	000.00	In units of degrees, $-180 \sim 180^{\circ}$
	Angular velocity		
	Acceleration		
	Magnetic declination		Degree
	Magnetic declination direction		E (East) or W (West)
	Checksum	*64	Xor each byte from ' \$' (but not \$) to '*' (but not *)
Frame trailer	End of agreement	\r\n	Line feed and carriage return

Table 10 INSPVAS format

4.3.3.7 RAWIMUS

This command is a short message protocol output (binary output only).

Examples of inertial navigation configuration commands:

Raw imusb onchanged of log com2 (binary)

Seria l num ber	Name	Meaning	Data type	Binary Byte	Binary Offse
1	RAWIMUS Header	Message header	_	н	0
2	Week	GPS weeks (GPS hours)	Ulong	4	Н
3	Seconds	GPS Week Second (GPS Hour)	Double	8	H+4
4	IMU Status	IMU status word	Hex Ulong	4	H+12

Seria l num ber	Name	Meaning	Data type	Binary Byte	Binary Offse
5	Z Accel Output	Fixed 200 Hz, divided by 250000.0. Becomes Z acceleration m/S2 (right-front-up)	Long	4	H+16
6	- (Y Accel Output)	Fixed 200 Hz, divided by-250000.0. Becomes Y acceleration m/S2 (right-front-up)	Long	4	H+20
7	X Accel Output	Fixed 200 Hz, divided by 250000.0. Becomes X acceleration m/S2 (right-front-up)	Long	4	H+24
8	Z Gyro Output	Fixed 200 Hz, divided by 5000000.0. Becomes Z angular velocity rad/s (right-front-up)	Long	4	H+28
9	- (Y Gyro Output)	Fixed 200 Hz, divided by-5000000.0. Becomes Y angular velocity rad/s (right-front-up)	Long	4	H+32
10	X Gyro Output	Fixed 200 Hz, divided by 5000000.0. Becomes X angular velocity rad/s (right-front-up)	Long	4	H+36
11	XXXX	32-bit CRC	Hex	4	H+40
12	[CR][LF]	Fixed end (ASCII only)	-		—

Table 11 RAW IMUS format

IMU type	Peg-top	Acceleration
ISA-100C	1.0E-9 rad/LSB	2.0E-9 m/s/LSB

Table 12 Raw IMU Scale

4.3.4 data logging

This product has the function of data storage, with a total storage space of 16g (the internal system

recovery partition and files used by other systems will be included, so it will be less than the normal empty SD card). The system automatically saves the storage information according to the user's configuration. The name of the saved data folder is recordX, where X is the file number (up to 39), and the number increases in turn. When X is 39, record00 will be automatically overwritten in the next storage, and X will still increase in turn in the next storage. If the system is configured to store data, the system will automatically delete the oldest data folder after each power-on operation. For example, if the currently generated file is record08, there will be no record09 folder in the system memory. Users can use this as a basis to find the latest data file. In addition, the current latest file name will also be displayed during configuration query.

The recordX folder contains various protocol files configured by the user. Each protocol is a separate file, and the file name is the protocol name.

5. Precautions

The main considerations are as follows:

The power-on and power-off time interval of the inertial navigation system shall not be less than
 s, otherwise the inertial device may be damaged;

2) Handle with care during handling, installation and use to avoid collision, falling and impact;

3) After the inertial navigation system is started, it is necessary to wait for the inertial navigation system to complete the coarse alignment before it can move linearly. The coarse alignment time is about 1 minute, otherwise the measurement accuracy will be affected;

4) After the carrier type is configured as the vehicle-mounted type, the inertial navigation system shall be installed and fixed on the vehicle, and the heading of the inertial navigation system shall be consistent with the head direction of the vehicle, with an error of not more than 10 degrees.