on	Number assified Phases	Make public
BS-FN200-M-D61	EC	
Technical Specifica	tion	
Compilation		
 Proofread		
 Audit		
Bid review		
Approval		

Countersign page

Unit	Department	Name	Date

1 General	1
2 Working principle	1
2.1 Basic composition	1
How the 2.2 works	1
3 Main functions	5
4 Technical indicators	5
Technical specifications of 4.1 inertial device	5
Technical index of navigation solution of 4.2	7
4.3 GPS/BD Performance Index)
4.4 Environmental Adaptability Specification)
Technical indexes for inspection of conventional items of 4.5)
5 External interface	l
5.1 mechanical interface	l
5.2 Electrical interface	2
5.3 communication interface	3
6 System parameter configuration)
Configuration of 6.1 installation coordinate system)
Lever arm coordinate configuration for 6.2 satellite antenna installation)
Configuration of installation error angle between 6.3 carrier and inertial navigation system)
6.4 odometer parameter configuration)
6.5 Master Inertial Navigation Coordinate Configuration	l

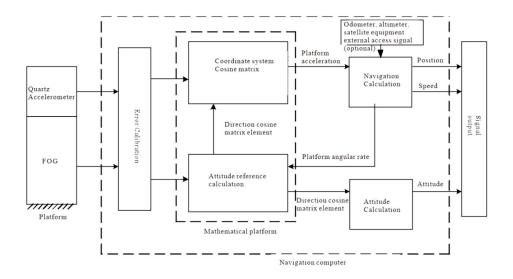
Catalog

1 Overview

BS-FN200-M-D6EC is a high-precision integrated navigation system. It contains three fiber optic gyroscopes, three quartz accelerometers, high-precision sampling circuit, navigation computer circuit, GNSS module and power supply circuit. And high-precision position and navigation in a complex environment are realized through multi-sensor fusion and an integrated navigation algorithm. The product has high reliability and strong environmental adaptability. The products can be widely used in intelligent driving, unmanned aerial vehicle, surveying and mapping, marine compass, stable platform, underwater vehicle, roadheader, mining machinery and other fields.

2 How it works

Basic composition


The basic components of the BS-FN200-M-D6EC integrated navigation system are shown in Table 1.

SN	Name of the part	Quantity	Remark
1	Model 70 High Precision Fiber	Three	
	Optic Gyroscope		
2	High-precision quartz addition	Three	
	meter		
3	Power conversion circuit	1 piece	
4	Navigation computer circuit	1 piece	
5	High-precision addition	1 piece	
	sampling circuit		
6	GPS/BD module	1	Optional
7	External GPS/BD antenna 1 set		Default line length
			2m

Table1Add requirements for technical indicators

How it works

The basic principle block diagram of BS-FN200-M-D6EC integrated navigation system is shown in Figure 1.

Figure1System block diagram

The integrated navigation system directly connects gyroscope, accelerometer, odometer and satellite equipment to the carrier. The gyroscope and the accelerometer respectively sense the angular velocity vector of the carrier coordinate system relative to the inertial coordinate system $\mathbf{\sigma}_{ib}^{b}$ And the specific force vector on the carrier coordinate system \mathbf{f}_{ib}^{b} . The navigation computer is a physical carrier to complete data collection and navigation calculation. It uses the angular velocity of the carrier measured by the gyroscope to calculate the attitude matrix, extracts the attitude and heading information of the carrier from the elements of the attitude matrix, and uses the attitude matrix to transform the output of the accelerometer from the carrier coordinate system to the navigation coordinate system, and then calculates the navigation information such as velocity and position. The position and velocity information obtained from outside (provided by odometer, altimeter and satellite equipment) is used to update the integrated navigation through Kalman filter to provide more accurate real-time position, velocity and attitude information.

3 Main functions

Main functions of the integrated navigation system are as follows:

- The initial alignment function is completed by using the output of the inertial device, and the shaking base alignment can be carried out;
- The GPS information received from outside can be used to complete the integrated navigation function and output information such as angle, speed and position.

- After the satellite signal is lost, the inertial device output and the odometer input can be used to continue the navigation calculation;
- 4) It can output high performance and high sampling rate gyro raw output and add raw data for stable platform control.
- 5) The program and configuration parameters can be upgraded online through the serial port.
- 4 Technical indicators

The technical index is only an example, and the specific index requirements refer to the signed Technical Agreement, Technical Requirements, Technical Contract and other documents.

Technical specifications of inertial devices

The specific parameters of the inertial instrument used in the integrated navigation system are shown in Table 2 \sim Table 3, and the test method of the gyroscope refers to GJB2426 A-2015.

I	tem Purpose	Indicators	Remark
	Measuring range	-500°/s \sim +500°/s	
	Resolution	≤0.01°/h	
	Bias residual	-0.02°/h \sim +0.02°/h	
Gyro	Random walk	≤0.007°/√h	
channel	Bias stability at room	$\leq 0.04^{\circ}/h (1\sigma, 10s)$	10 seconds smoothing, 1H test
	temperature		result
	Bias stability at full	$\leq 0.06^{\circ}/h \ (1\sigma, 10s)$	10 seconds smoothing, 1H test
	temperature		result
	Normal-temperature	$\leq\!\!0.04^{\circ}\!/h~(1\sigma)$	Statistics of 6 test data
	Bias repeatability		
	Bias repeatability at full	$\leq 0.06^{\circ}/h$ (1 σ)	Take 2 Bias data at full
	temperature		temperature, high temperature, low
			temperature and normal
			temperature respectively
	Scale factor nonlinearity	≤30ppm	Full temperature and constant
			temperature

Table2Gyro technology

Scale factor repeatability	≤ 30 ppm (1 σ)	Full temperature and constant
		temperature
Gyro start time	≤5s	
Gyro bandwidth	>300Hz	Design assurance, batch testing
Installation error	≤10"	
residual of three-axis		
gyroscope		

Table3Add table technical indicators

It	tem Purpose	Indicators	Remark
	Measuring range	-20g \sim +20g	Design and selection guarantee
Accele ration	Bias stability at full temperature	≤50ug (1σ)	10 seconds smoothing, 1H test result
channe 1	Bias repeatability at full temperature	≤80ug (1σ)	Take 2 Bias data at full temperature, high temperature, low temperature and normal temperature respectively
	Add up the starting time	≤5s	
	Triaxial addition installation error residual	≤10"	

Technical index of navigation solution

The alignment and navigation indexes of the integrated navigation system are shown in Table $4 \sim$ Table 6, and the test methods of relevant technical indexes are shown in GJB5418-2005.

Table4Alignment accuracy

It	em Purpose	Indicators	Remark
	North seeking time	≤5min	Generally, the standard is 3min or 5min.
Align ment	Heading Angle Alignment Repeatability	$\leq 0.08^{\circ}/cosL$	1σ
accura cy	Pitch Alignment Repeatability	≤0.005°	1σ
	Roll Angle Alignment Repeatability	≤0.005°	1σ
	North-seeking mode	Optional	It can realize swaying base alignment, GPS auxiliary alignment during travel, odometer auxiliary

alignment during trave inertial navigation	
alignment.	

Item Purpose		Indicators	Remark
Integra	Accuracy of course angle measurement	≤0.06°	1σ
ted naviga	Accuracy of pitch angle measurement	≤0.03°	1σ
tion accura cy	Roll angle measurement accuracy	≤0.03°	1σ
	Speed accuracy	≤0.03m/s	Satellite is valid
	Position accuracy	≤1.5m	Satellite Point Positioning, CEP
	Position accuracy	≤2cm+1ppm	Satellite RTK Fixed Solution, CEP

Table5Integrated navigation accuracy (satellite effective)

Table6Inertial navigation accuracy (invalid satellite)

Ite	em Purpose	Indicators	Remark
Inertial	Accuracy of course angle maintenance	≤0.06°/h	
navigati on accurac	Pitch Angle Holding Accuracy	≤0.03°/h	
у	Accuracy of roll angle maintenance	≤0.03°/h	
	Pure inertial horizontal positioning accuracy	\leq 1.0 nautical mile/H (5h)	50% CEP without external information assistance (GJB729-89)
	Position positioning accuracy of odometer integrated	≤ 0.2% (mileage greater than 3 km)	
	navigation		

GPS/BD performance index

Support network RTK service and support dual antennas.

Table7GPS/BD nomin	nal accuracy
--------------------	--------------

Project	Indicators	Remark
GPS Cold Start Time	≤25s	Typical value
GPS Hot Start Time	≤5s	Typical value
GNSS RTK Initialization Time	≤5s	Typical value

	GPS L1CA/L5 BDS B1I/B2a	
Receiving satellite signal	GLONASS L1	
frequency point	GALILEO E1/E5a	
	QZSS L1/L5	
Number of channels	198	
Measurement accuracy of single	0.3°	Maneuvering conditions are
antenna track angle		required
Horizontal positioning accuracy	1.5m	RMS
of single point		
Positioning accuracy of single	3.0m	RMS
point elevation		
Horizontal positioning accuracy	10mm+1ppm	RMS
of RTK floating-point solution		
Height positioning accuracy of	20mm+1ppm	RMS
RTK floating point solution		
Speed accuracy	0.03m/s	RMS
PPS time accuracy	20ns	RMS
GPS data update rate	1Hz、5Hz	

Technical index of environmental adaptability

Relevant requirements for environmental adaptability shall be implemented in accordance with GJB150A.

Project	Indicators	Remark
Operating temperature	-40°C~+70°C	
Storage temperature	-45°C~+70°C	
Vibration adaptability	20Hz~2000Hz; 0.04g ² /Hz	
Impact adaptability	20g, 11ms, half sine	

Table8Env	rironmental	ada	ptability

Other environmental adaptability tests can be carried out with the whole machine, such as low air pressure, strong wind adaptability, constant humidity and heat, temperature-humidity-altitude, acceleration, solar radiation, rain, temperature shock, mold, salt fog, sand and dust, electromagnetic compatibility, etc.

Routine item inspection technical index

It mainly includes appearance, interface and so on.

Table9Technical	indicators	of c	conventional	items

Project	Indicators	Remark
Appearance color	Golden	
Identification	Mark the forward direction and identify the basic information of product	See mechanical interface for details.
Overall dimensions	178mm*178mm*134.5mm	Tolerance $\pm 1 \text{ mm}$
Installation dimensions	162mm*162mm (4*Φ6.5)	Tolerance $\pm 0.2 \text{ mm}$
Weight	≤6kg	
Supply voltage	18V~36V(DC)	
Steady-state power consumption	≤20W	
Peak power consumption	≤50W	
Communication interface form	CAN	500Kbps, external wheel speed information, sending navigation information
Communication interface form	RS422	Baud rate and output frequency can be customized
Communication interface form	Network interface	

5 External interface

Mechanical interface

The inertial measurement unit and GNSS receiver adopt an integrated design scheme and are integrated in the integrated navigation system. The outline of the system is shown in Figure 2.

Figure2Outline dimension block diagram

Electrical interface

The system has four external connectors: one is the communication interface, one is the power supply interface, and two are the SMA interfaces of GPS. The details are as follows:

SN	Name	Definition of point number	Remark			
1	Input 28 V supply positive	1	+			
2	Input 28 V supply negative	2	-			
	The connector model is					

Table10Definition of power input interface

Table11Test interface definition

SN	Name	Definition of point number	Remark			
1	Interface with customer T +	5				
2	Interface with customer T-	4	Communicate with			
3	Interfacing with customers R +	2	customers			
4	Interface with Customer R-	1				
	Model of connector: Y50X5-1013Z10K					

The SMA socket is female.

Communication interface

Current products and communication protocols can be customized according to customer requirements. At present, the general interface protocol of our company is shown in the following table.

		1	1	1	Byte Hotoeof	1
SN	Data definition	Data type	Numbe r of bytes	Byte sequenc e number	Unit	Remark
1	Frame header	short	2	0-1	None	0x55, 0xAA (0x55 is the low byte)
2	Frame sequence number	Unsigne d int	4	2-5	0.01 seconds	Plus 1 every 0.01 second
3	System status	Unsigne d char	1	6	None	The current state of the inertial navigation system, 0x00 is the power ready state, 0x01 is the power ready state, 0x02 is the alignment state, 0x03 is the pure inertial navigation state, 0x04 is the GPS integrated navigation state, and 0x05 is the odometer integrated navigation state.
4	System fault information	Unsigne d short int	2	7-8	None	Generally, 0 is fault and 1 is normal. See Table 3 for the definition.
5	X-gyro raw incremental information	float	4	9-12	LSB/°/s	The initial moment is the original output of the gyroscope and accelerometer. The initial
6	Y gyro raw incremental	float	4	13-16	LSB/°/s	value of the parameter shall be burned at the

Table12Universal Byte Protocol

SN	Data definition	Data type	Numbe r of bytes	Byte sequenc e number	Unit	Remark
	information					initial moment. Except for the change of polarity, the
7	Z gyro raw incremental information	float	4	17-20	LSB/°/s	result of the data shall not be affected.
8	X adds the original delta information	float	4	21-24	LSB/m/s ²	
9	Y adds the original incremental information	float	4	25-28	LSB/m/s ²	
10	Z adds the original delta information	float	4	29-32	LSB/m/s ²	
11	X-axis compensati on clearance delta information	float	4	33-36	°/s	The specific content is determined according to the format of the parameter programming, and when the temperature
12	Y-axis compensati on back delta information	float	4	37-40	°/s	compensation parameter is programmed, the data is the data after the temperature compensation; When tool error compensation is completed, it is Wibbx, Wibby, Wibbz, Fibbx, Fibby, Fibbz.
13	Z-axis compensati on back delta information	float	4	41-44	°/s	

SN	Data definition	Data type	Numbe r of bytes	Byte sequenc e number	Unit	Remark
14	Linear velocity increment information after X-axis compensati on	float	4	45-48	m/s/s	
15	Linear velocity increment information after Y-axis compensati on	float	4	49-52	m/s/s	
16	Linear velocity increment information after Z-axis compensati on	float	4	53-56	m/s/s	
17	Heading angle	float	4	57-60	o	Clockwise positive
18	Pitch Angle	float	4	61-64	o	Head up is positive
19	Roll Angle	float	4	65-68	0	Right leaning is positive
20	Eastbound speed	Short int	2	69-70	m/s	1LSB=0.01m/s
21	Northboun d speed	Short int	2	71-72	m/s	1LSB=0.01m/s
22	Celestial	Short int	2	73-74	m/s	1LSB=0.01m/s

SN	Data definition	Data type	Numbe r of bytes	Byte sequenc e number	Unit	Remark
	speed					
23	Longitude	int	4	75-78	o	WGS84 coordinate system, positive east longitude, negative west longitude, 1LSB = $180/(2^{3^2}-1) + 70^{\circ}$
24	Latitude	int	4	79-82	o	WGS84 coordinate system, north latitude is positive, south latitude is negative, $1LSB = 90/(2^{32} - 1)^{\circ}$
25	Height	Float	4	83-86	m	Elevation in WGS84 coordinate system
26	Eastward speed of satellite (main inertial navigation system)	Short int	2	87-88	m/s	1LSB=0.01m/s
27	Satellite (main inertial navigation) northbound velocity	Short int	2	89-90	m/s	1LSB=0.01m/s
28	Atellite (main inertial navigation) celestial velocity	Short int	2	91-92	m/s	1LSB=0.01m/s

SN	Data definition	Data type	Numbe r of bytes	Byte sequenc e number	Unit	Remark
29	Satellite (Master Inertial Navigation) Longitude	int	4	93-96	o	WGS84 coordinate system, positive east longitude, negative west longitude, 1LSB = $180/(2^{3^2}-1) + 70^{\circ}$
30	Satellite (main inertial navigation) latitude	int	4	97-100	o	WGS84 coordinate system, north latitude is positive, south latitude is negative, $1LSB = 90/(2^{32} - 1)^{\circ}$
31	Satellite (Master Inertial) Altitude	Float	4	101-104	m	Elevation in WGS84 coordinate system
32	Gyro temperature	Short int	2	105-106	o	1LSB=0.01°C
33	Add gauge temperature	Short int	2	107-108	0	1LSB=0.01°C
34	X Gyro (2)	float	4	109-112	LSB/°/s	
35	Y Gyro (2)	float	4	113-116	LSB/°/s	
36	Z Gyro (2)	float	4	117-120	LSB/°/s	
37	X plus (2)	float	4	121-124	LSB/m/s ²	
38	Y plus (2)	float	4	125-128	LSB/m/s ²	
39	Z Plus (2)	float	4	129-132	LSB/m/s ²	
40	GPS pps	Unsigne d int	4	133-136		

SN	Data definition	Data type	Numbe r of bytes	Byte sequenc e number	Unit	Remark
41	GPS quality	Unsigne d char	1	137	None	GPS Quality Indicator 0 = Positioning is unavailable or invalid 1 = single point positioning 2 = pseudorange differential 4 = RTK fixed solution 5 = RTK Float Solution 6 = GNSS/INS integrated navigation 7 = Fixed Position Convert to characters when displayed
42	Wheel Speed-Left Front	Float	4	138-141	۸	Odometer accumulation and data
43	Wheel Speed-Righ t Front	Float	4	142-145	۸	Odometer incremental data
44	Wheel speed-left rear	Float	4	146-149	۸	Odometer accumulation and data
45	Wheel Speed-Righ t Rear	Float	4	150-153	۸	Odometer incremental data
46	Reserved	float	4	154-157		The default is 0
47	Reserved	float	4	158-161		The default is 0
48	Reserved	Float	4	162-165		The default is 0
49	Data checksum	Unsigne d char	1	166	None	Accumulate the sum of all bytes except the frame header, and take the byte

SN	Data definition	Data type	Numbe r of bytes	Byte sequenc e number	Unit	Remark	
						with the lowest bit of the accumulated sum. The overflow of high bits is not counted.	
Note:							

6 System parameter configuration

Configuration of the installation coordinate system

At present, the "X, Y, Z" coordinates marked on the product are installed on the carrier in the right front direction by default, which can be changed through configuration instructions.

Lever arm coordinate configuration for satellite antenna installation

At present, under the customer's load system, the parameters of the outer lever arm of the satellite antenna can be configured.

Configuration of error angle between carrier and inertial navigation

At present, under the carrier system of the customer, the installation error angle between the main inertial navigation system and the sub-inertial navigation system can be configured. Pay attention to the rotation sequence.

Odometer parameter configuration

At present. The odometer parameters are initially determined with the customer before delivery and estimated in real time. After delivery, it is necessary to calibrate the odometer parameters with the customer's products and burn them into our products.

Main inertial navigation coordinate configuration

At present, under the carrier coordinate system of the customer, the coordinates of our inertial navigation system under the carrier coordinate system of the customer can be configured.